| Peer-Reviewed

Influence of Natural Polysaccharides on the Redox Processes of CuTsPc Thin Films and Dopamine Sensing

Received: 8 August 2013     Published: 30 August 2013
Views:       Downloads:
Abstract

Energy diagrams have been obtained for copper tetrasulfonated phthalocyanine (CuTsPc) from electrochemical and electronic absorption measurements in layer-by-layer (LbL) films with cashew (Anacardium occidentale L.) and angico branco (Anadenanthera colubrina) natural polysaccharides in the anionic layers. In this study, LbL films were produced with either copper tetrasulfonated phthalocyanine or polysaccharides (cashew or angico branco). Since CuTsPc and the gums are polyanions, the multilayer deposition was carried out in a tetralayer fashion, in which a conventional cationic polyelectrolyte, namely poly (allylamine hydrochloride) (PAH), was interposed between the polyanionic layers. An alternative for the simultaneous determination of electrochemical signals was using the deconvolution procedure. Mathematical deconvolution of the peaks followed Gaussian analysis. The presence of the gum led to increased adsorption of the phthalocyanine, and enhanced the UV-VIS absorption and electrochemical response of the films. Furthermore, modified electrodes based on polysaccharides/phthalocyanine films were able to detect dopamine at concentrations as low as 10-5mol/L.

Published in International Journal of Materials Science and Applications (Volume 2, Issue 5)
DOI 10.11648/j.ijmsa.20130205.11
Page(s) 146-156
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Natural Polymers, Copper Phthalocyanine, LbL Films, Mathematical Deconvolution, Dopamine

References
[1] Gao, W. T.; Zhang, S. F.; Yang, J. Z.; & Huang, L. Metal phthalocyanine catalyzed oxidation of 4-nitrotoluene-2-sulfonic acid to 4,4′-dinitrostilbene-2, 2′-disulfonic acid. Dyes Pigm. 44 155-159(2000).
[2] Albertini, V. R.; Generosi, A.; Paci, B.; Perfetti, P.; Rossi, G.; Capobianchi, A.; Paoletti, A. M.; Caminiti, R. Time-resolved energy dispersive x-ray reflectometry measurements on ruthenium phthalocianine gas sensing films. Appl. PhysLett. 82 3868-3871(2003).
[3] Leznoff, C. C., Lever, A. B. P. Phthalocyanines: Properties and Applications. Cambridge: WileyVCH. 1996.
[4] Chen, Y.; O'Flaherty, S. M.; Hanack, M.; Blau, W. J. New axially aryloxy substituted gallium phthalocyanines for nonlinear optics. J. Mater. Chem. 13 2405-2408(2003).
[5] Tsujioka, T.; Hamada, Y.; Shibata, K.; Taniguchi, A.; Fuyuki, T. Nanodestructive readout of photochromic optical memory using photocurrent detection. Appl. Phys. Lett. 78 2282-2285(2011).
[6] Brito, A. C. F.; Silva, D. A.; Paula, R. C. M.; Feitosa, J. P. A. Sterculiastriata exudate polysaccharide: characterization, rheological properties and comparison with Sterculiaurens (karaya) polysaccharide. Polym. Int. 53 1025-1032(2004).
[7] Brito, A. C. F.; Sierakowski, M. R.; Reicher, F.; Feitosa, J. P. A.; Paula, R. C. M. Dynamic rheological study of Sterculiastriata and karaya polysaccharides in aqueous solution. Food Hidrocolloids. 19 861-867(2005).
[8] Silva, D. A.; Brito, A. C. F.; Paula, R. C. M.; Feitosa, J. P. A.; Paula, H. C. B. Effect of mono and divalent salts on gelation of native, Na and deacetylatedSterculiastriata and Sterculiaurens polysaccharide gels. Carbohydrate Polymers. 54 229-236(2003).
[9] Aquino, A. R. L.; Rossetti, A. G. Influência do tipo de ramo sobre o crescimento e produção do cajueiro anão precoce de copa substituída. Rev. Bras. Fructi. 24 756-758(2002).
[10] Verbeken, D.; Dierckx, S.; Dewettinck, K. Exudate gums: occurrence, production, and applications. Appl. Microbiol. Biotechnol. 63 10-21(2003).
[11] Yebeyen, D.; Lemenih, M.; Feleke, S. Characteristics and quality of gum arabic from naturally grown Acacia senegal (Linne) Willd. trees in the Central Rift Valley of Ethiopia. Food Hydrocolloids. 23 175-180(2009).
[12] Gyedu-Akoto, E.; Oduro, I.; Amoah, F. M.; Oldham, J. H.; Ellis, W. O.; Opoku-Ameyaw, K.; Asante, F.; Bediako, S. Quality estimation of cashew gum in the production of chocolate pebbles. African J. Food Sci. Technol. 2 16-20(2008).
[13] Mothé, C.G.; Correia, D.Z.; Carestiao, T. Potencialidades do Cajueiro: caracterização tecnológica e aplicação. Rio de Janeiro: Publit Soluções Editoriais Ltda. 2006.
[14] Schirato, G. V.; Monteiro, F. M. F.; Silva, F. O.; Lima Filho, J. L.; Leão, A. M. A. C.; Porto, A. L. F. O polissacarídeo do Anacardium occidentale L. na fase inflamatória do processo cicatricial de lesões cutâneas. Ciência Rural. 36 149-154(2006).
[15] Mothé, C. G.; Rao, M. A. Rheological behavior of aqueous dispersions of cashew gum and gum arabic: effect of concentration and blending. Food Hydrocolloids. 13 501-506(1999).
[16] Gyedu-Akoto, E.; Oduro, I.; Amoah, F. M.; Oldham, J. H.; Ellis, W.O.; Opoku-Ameyaw, K. Rheological properties of aqueous cashew tree gum solutions. Sci. Res. Essay. 2 458-461(2007).
[17] Toma, H.E. O mundo nanométrico: a dimensão do novo século.São Paulo: Oficina de textos. 2004.
[18] Irvine, J. T. S.; Eggins, B. R. The cyclic voltammetry of some sulphonated transition metal phthalocyanines in dimethylsulphoxide and in water. J. Electroanal. Chem. 271 161-172(1989).
[19] Nevin, W. A.; Liu, W.; Melnik, M.; Lever, A. B. P. Spectro-electrochemistry of cobalt and iron tetrasulphonated phthalocyanines. J. Electroanal. Chem. 213 217-234(1986).
[20] Zucolotto, V.; Ferreira, M.; Cordeiro, M.R.; Constantino, C. J. L.; Moreira, W. C.; Oliveira Jr, O. N. Nanoscale manipulation of polyaniline and phthalocyanines for sensing applications. Sens. Actuators B. 113 809-815(2006).
[21] Paterno, L. G.; Mattoso, L.H.C.; Oliveira Jr, O. N. Filmes poliméricos ultrafinos produzidos pela técnica de automontagem: preparação, propriedades e aplicações. Quim. Nova. 24 228-235(2001).
[22] Zucolotto, V.; Ferreira, M.; Cordeiro, M. R.; Constantino, C. J. L.; Balogh, D. T.; Zanatta, A. R.; Moreira, W. C.; Oliveira Jr, O. N. Unusual interactions binding iron tetrasulfonated phthalocyanine and poly(allylamine hydrochloride) in layer-by-layer films. J. Phys. Chem. B. 107 3733-3737(2003).
[23] Schönhoff, M. Self-assembled polyelectrolyte multilayers. Curr. Opin. Colloid Interface Sci. 8 86-95(2003).
[24] Frost, R. L.; Erickson, R. L.; Weier, M. L.; Carmody, O. Raman and infrared spectroscopy of selected vanadates.Spectrochim. Acta, Part A. 61 829-834(2005).
[25] Frost, R. L. An infrared and Raman spectroscopic study of natural zinc phosphates O. Spectrochim. Acta, Part A. 60 1439-1445(2004).
[26] Micaroni, L.; Nart, F.C.; Hummelgen, I. A. Considerations about the electrochemical estimation of the ionization potential of conducting polymers. J. Solid State Electrochem. 7 55-59(2002).
[27] Garcia, J. R.; Peres, L. O.; Fernandes, M. R.; Gruber, J.; Nart, F. C. One-step electrochemical synthesis of pure poly(2,5-dicyano-p-phenylenevinylene) films. J. Solid State Electrochem. 8 122-126(2004).
[28] Eckhardt, H.; Shacklette, L. W.; Jen, K. Y.; Elsenbaumer, R. L. The electronic and electrochemical properties of poly(phenylenevinylenes) and poly(thienylenevinylenes): An experimental and theoretical study. J. Chem. Phys. 91 1303-1316(1989).
[29] Janietz, S.; Bradley, D. D. D.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 73 2453-2456(1998).
[30] Roman, L. S.; Hümmelgen, I. A.; Nart, F. C.; Peres, L. O.; Sá, E. L. Determination of electroaffinity an ionization potential of conjugated polymers via Fowler – Nordheim tunneling measurements: Theorical formulation and application to poly(p-phenylenevinylene). J. Chem. Phys. 105 10614-10621(1996).
[31] Spaepen, H.; Campbell, I. H.; Smith, D. L. Physics of organic devices. In F. Ehrenreich (Ed.), Solid state physics – advances in research and applications. London: Academic Press. 2001.
[32] Costa, S. M. O.; Rodrigues, J. P. A.; De Paula, R. C. M. Monitorização do processo de purificação de gomas naturais: goma do cajueiro. Rev. Bras. Eng. Agríc. Ambient. 2 49-54(1996).
[33] H. Wang, D. Loganathan, R. J. Linhardt. Determination of the pKa of glucuronic acid and the carboxy groups of heparin by 13C-nuclear-magnetic resonance spectroscopy. Biochem. J. 278 689-695(1991).
[34] Bard, A. J., Parsons, R., and Jordan, J. Standard Potentials in Aqueous Solutions, Marcel Dekker, New York. 1985.
[35] Crespilho, F.N.; Zucolotto, V.; SiqueiraJr, J.R.; Carvalho, A. J. F.; Nart, F.C.; Oliveira Jr, O. N. Using electrochemical data to obtain energy diagrams for layer-by-layer films from metallic phthalocyanines. Int. J. Electrochem. Sci. 1 151-159(2006).
[36] Motulsky, H.; J.Analysing data with graphpad prism. San Diego: Graphpad Software. 1999.
[37] Agostinho, S. M. L.; Villamil, R. F. V.; Agostinho Neto, A.; Aranha, E. O eletrólito de suporte e suas múltiplas funções em processos de eletrodo. Quim. Nova. 27 813-817(2004).
[38] Crespilho, F. N.; Zucolotto, V.; Oliveira Jr, O. N.; Nart, F. C. Electrochemistry of layer-by-layer films: a review. Int. J. Electrochem. Sci. 1 194-214(2006).
[39] SiqueiraJr, J.; Gasparotto, L. H. S.; Crespilho, F. N.; Carvalho, A. J. F.; Zucolotto, V.; Oliveira Jr, O. N. Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. J. Phy. Chem. B. 110 22690-22694(2006).
[40] S., Trasatti. Structuring of the solvent at metal/solution interfaces and components of the electrode potential.Electroanal. Chem. 150 1-15(1983).
[41] Xie, Q.; Kuwabata, S.; Yoneyama, H. EQCM studies on polypyrrole in aqueous solutions. J. Electroanal. Chem. 420 219-272(1997).
[42] Bredas, J. L. Electronic structure of highly conducting polymers. In: T.A. Skotheim (Ed.), Handbook of conducting polymers.New York: Dekker. 1986.
[43] Fermin, D. J.; Teuel, H.; Scharaifker, B. R. Changes in the population of neutral species and charge carriers during electrochemical oxidation of polypyrrole. J. Electroanal. Chem. 401 207-214(1996).
[44] Stockert, D.; Kessel, R.; Schultze, J. W. Absorption, photocurrent and photoelectron spectra of heterocyclic polymers. Synth. Met. 41 1295-1300(1991).
[45] Lawrence, N. S.; Beckett, E. L.; Davis, J.; Compton, R. G. Advances in the voltammetric analysis of small biologically relevant compounds. Anal. Biochem. 303 1-16(2002).
[46] Skoog, D. A.; Holler, F. J. Princípios de análise instrumental, 5th ed.; Bookman: 2002.
[47] Oni, J.; Nyokong, T. Simultaneous voltammetric determination of dopamine and serotonin on carbon paste electrodes modified with iron(II) phthalocyanine complexes. Anal. Chim. Acta 434 9-21(2001).
[48] Ferreira, M.; Dinelli, L. R.; Wohnrath, K.; Batista, A. A. A.; Oliveira, O. N., Jr. Langmuir-Blodgett films from polyaniline/ruthenium complexes as modified electrodes for detection of dopamine. Thin Solid Films. 446 301-306(2004).
[49] Lanças, F. M. Validação de métodos cromatográficos de análise; Rima: São Carlos, Brazil. 2004.
[50] Brett, C. M. A.; Brett, A. M. O. Electroquímica: princípios, métodos e aplicações, Vol. 1; Almedina: Coimbra, Portugal. 1996.
Cite This Article
  • APA Style

    Silio Lima de Moura, Carlos Maria Müller Jevenois, Maria Isabel Pividori, José Aroldo Viana dos Santos, Valtencir Zucolotto, et al. (2013). Influence of Natural Polysaccharides on the Redox Processes of CuTsPc Thin Films and Dopamine Sensing. International Journal of Materials Science and Applications, 2(5), 146-156. https://doi.org/10.11648/j.ijmsa.20130205.11

    Copy | Download

    ACS Style

    Silio Lima de Moura; Carlos Maria Müller Jevenois; Maria Isabel Pividori; José Aroldo Viana dos Santos; Valtencir Zucolotto, et al. Influence of Natural Polysaccharides on the Redox Processes of CuTsPc Thin Films and Dopamine Sensing. Int. J. Mater. Sci. Appl. 2013, 2(5), 146-156. doi: 10.11648/j.ijmsa.20130205.11

    Copy | Download

    AMA Style

    Silio Lima de Moura, Carlos Maria Müller Jevenois, Maria Isabel Pividori, José Aroldo Viana dos Santos, Valtencir Zucolotto, et al. Influence of Natural Polysaccharides on the Redox Processes of CuTsPc Thin Films and Dopamine Sensing. Int J Mater Sci Appl. 2013;2(5):146-156. doi: 10.11648/j.ijmsa.20130205.11

    Copy | Download

  • @article{10.11648/j.ijmsa.20130205.11,
      author = {Silio Lima de Moura and Carlos Maria Müller Jevenois and Maria Isabel Pividori and José Aroldo Viana dos Santos and Valtencir Zucolotto and Ionara Nayana Gomes Passos and José Ribeiro dos Santos Júnior},
      title = {Influence of Natural Polysaccharides on the Redox Processes of CuTsPc Thin Films and Dopamine Sensing},
      journal = {International Journal of Materials Science and Applications},
      volume = {2},
      number = {5},
      pages = {146-156},
      doi = {10.11648/j.ijmsa.20130205.11},
      url = {https://doi.org/10.11648/j.ijmsa.20130205.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20130205.11},
      abstract = {Energy diagrams have been obtained for copper tetrasulfonated phthalocyanine (CuTsPc) from electrochemical and electronic absorption measurements in layer-by-layer (LbL) films with cashew (Anacardium occidentale L.) and angico branco (Anadenanthera colubrina) natural polysaccharides in the anionic layers. In this study, LbL films were produced with either copper tetrasulfonated phthalocyanine or polysaccharides (cashew or angico branco). Since CuTsPc and the gums are polyanions, the multilayer deposition was carried out in a tetralayer fashion, in which a conventional cationic polyelectrolyte, namely poly (allylamine hydrochloride) (PAH), was interposed between the polyanionic layers. An alternative for the simultaneous determination of electrochemical signals was using the deconvolution procedure. Mathematical deconvolution of the peaks followed Gaussian analysis. The presence of the gum led to increased adsorption of the phthalocyanine, and enhanced the UV-VIS absorption and electrochemical response of the films. Furthermore, modified electrodes based on polysaccharides/phthalocyanine films were able to detect dopamine at concentrations as low as 10-5mol/L.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Influence of Natural Polysaccharides on the Redox Processes of CuTsPc Thin Films and Dopamine Sensing
    AU  - Silio Lima de Moura
    AU  - Carlos Maria Müller Jevenois
    AU  - Maria Isabel Pividori
    AU  - José Aroldo Viana dos Santos
    AU  - Valtencir Zucolotto
    AU  - Ionara Nayana Gomes Passos
    AU  - José Ribeiro dos Santos Júnior
    Y1  - 2013/08/30
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ijmsa.20130205.11
    DO  - 10.11648/j.ijmsa.20130205.11
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 146
    EP  - 156
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20130205.11
    AB  - Energy diagrams have been obtained for copper tetrasulfonated phthalocyanine (CuTsPc) from electrochemical and electronic absorption measurements in layer-by-layer (LbL) films with cashew (Anacardium occidentale L.) and angico branco (Anadenanthera colubrina) natural polysaccharides in the anionic layers. In this study, LbL films were produced with either copper tetrasulfonated phthalocyanine or polysaccharides (cashew or angico branco). Since CuTsPc and the gums are polyanions, the multilayer deposition was carried out in a tetralayer fashion, in which a conventional cationic polyelectrolyte, namely poly (allylamine hydrochloride) (PAH), was interposed between the polyanionic layers. An alternative for the simultaneous determination of electrochemical signals was using the deconvolution procedure. Mathematical deconvolution of the peaks followed Gaussian analysis. The presence of the gum led to increased adsorption of the phthalocyanine, and enhanced the UV-VIS absorption and electrochemical response of the films. Furthermore, modified electrodes based on polysaccharides/phthalocyanine films were able to detect dopamine at concentrations as low as 10-5mol/L.
    VL  - 2
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Bioelectrochemistry Laboratory, Federal University of Piauí, Teresina 64 049 550, Brazil

  • Electrodeposition and Corrosion Laboratory, University of Barcelona, Barcelona 08 028, Spain

  • Sensors and Biosensors Group, Autonomous University of Barcelona, Bellaterra 08 193, Spain

  • Bioelectrochemistry Laboratory, Federal University of Piauí, Teresina 64 049 550, Brazil

  • Nanomedicine and Nanotoxicology Laboratory, University of S?o Paulo, S?o Carlos 13 560 970, Brazil

  • Bioelectrochemistry Laboratory, Federal University of Piauí, Teresina 64 049 550, Brazil

  • Bioelectrochemistry Laboratory, Federal University of Piauí, Teresina 64 049 550, Brazil

  • Sections