Hydrological modeling of ungauged basins is important and imperative for policymakers and stakeholders in water management. The Kayanga river upstream from the Niandouba dam is subject to extreme pressure caused by natural and anthropogenic factors. The hydro system Niandouba Dam and Confluent Dam are used to providing water for the irrigated perimeters in Anambe. Since there is no data available to evaluate the water resources entering the Niandouba Dam, we used Soil and Water Assessment Tools (SWAT) to set up a hydrological model in the ungauged basin of Kayanga river upstream Niandouba dam. A regionalization approach has been used to predict the river discharge at Niandouba watershed upstream of the Niandouba dam. SWAT model has been calibrated from 01/01/2001 to 31/12/2001 and validated from 01/01/2002 to 31/12/2002, with a daily scale on the Koulountou watershed. During the calibration period, the criteria of goodness of fit are respectively 0.87 for Nash-Sutcliffe Efficiency coefficient (NSE), 0.87 for coefficient of determination (R2), -1.6% for Percent Bias (PBIAS) and 0.36 for Standard Deviation Ratio (RSR). In the validation period, we have found a Nash-Sutcliffe Efficiency coefficient (NSE) of 0.62, a coefficient of determination (R2) of 0.77, a Percent Bias (PBIAS) of +35.9%, Standard Deviation Ratio (RSR) of 0.62. These parameters have been used to generate flows at the entrance of the Niandouba Dam.
Published in | Journal of Water Resources and Ocean Science (Volume 9, Issue 1) |
DOI | 10.11648/j.wros.20200901.14 |
Page(s) | 29-41 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2020. Published by Science Publishing Group |
Hydrological Modeling, SWAT, Niandouba Dam, Kayanga River, Ungauged, Irrigation, Calibration, Validation
[1] | DACOSTA, Honoré; COLY, Adrien; et SOUMARÉ, Pape Ousmane. 2002. Adéquation de l’offre et de la demande en eau: Dynamique hydrologique de l’Anambé (Sénégal). Marseille: IRD Éditions, (généré le 23 avril 2017). ISBN: 9782709918176. DOI: 10.4000/books.irdeditions.8571. |
[2] | Diouf M. 2013. Cohabitation entre petits producteurs et grands exploitants agricoles sur les terres irriguées: cas de la sodévol et des petits producteurs du périmètre aménagé du bassin de l’Anambé au Sénégal. Union Internationale pour la Conservation de la Nature (UICN-Sénégal). |
[3] | SODAGRI. 2015. Rapport annuel d’activités. Société de développement agricole et industriel du Sénégal. Ministère de l’Agriculture et de l’Equipement Rural (MAER). Sénégal. |
[4] | IDEV-ic. 2010. Etat des lieux autour des barrages de Niandouba et du Confluent au Sénégal |
[5] | Marian Amoakowaah Osei., Leonard Kofitse Amekudzi., David Dotse Wemegah., Kwasi Preko., Emmanuella Serwaa Gyawu., and Kwasi Obiri-Danso. 2018. Hydro-Climatic Modelling of an Ungauged Basin in Kumasi, Ghana. journal Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-2017-729. |
[6] | Razna Rahim., Sheena Hassan. 1014. Stream Flow Prediction in Ungauged Basin: Calibration and Validation Analysis Using SWATCUP. International journal of scientific and engineering research, volume 5, issue 7, ISSN 2229-5518. |
[7] | Ammar Rafiei Emam., Martin Kappas., Linh Hoang Khanh Nguyen., Tsolmon Renchin. 2016. Hydrological Modeling in an Ungauged Basin of Central Vietnam Using SWAT Model. journal Hydrol. Earth Syst. Sci. doi: 10.5194/hess-2016-44, 2016. |
[8] | Himanshu Mishra., Derrick Mario Denis., Shakti Suryavanshi., Mukesh Kumar., Santosh Kumar Srivastava., Anjelo Francis Denis., Rajendra Kumar. 2017. Hydrological simulation of a small ungauged agricultural watershed Semrakalwana of Northern India. Appl Water Sci (2017) 7: 2803–2815 DOI 10.1007/s13201-017-0531-7. |
[9] | H. Sellami., I. La Jeunesse., S. Benabdallah., N. Baghdadi., and M. Vanclooster. 2014. Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern France). Journal Hydrol. Earth Syst. Sci., 18, 2393–2413. doi: 10.5194/hess-18-2393-2014. |
[10] | Maryam Alipour., Majid Hosseini. 2018. Simulation of surface runoff in Karaj dam basin, Iran. Applied Water Science. https://doi.org/10.1007/s13201-018-0782-y. |
[11] | U.S. Army Corps of Engineers Hydrologic Engineering Center (USACE-HEC) (2009), HEC-HMS Hydrologic Modeling System – User’s Manual, USACE-HEC, Davis, CA. |
[12] | M. Butts, J. Overgaard, D. Graham, A. Dubicki, K. Strońska, W. Szalinksa, A. Lewandowski, T. Olszewski, T. Kolerski, O. Larsen. 2005. Process-based Hydrological Modelling Framework MIKE SHE for Flood Forecasting on the Upper and Middle Odra. ICID 21st European Regional Conference. Frankfurt (Oder) and Slubice - Germany and Poland. |
[13] | Seibert, J., 1999. Conceptual runoff models - fiction or representation of reality? Acta Univ. Ups., Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 436. 52 pp. Uppsala. ISBN 91-554-4402-4. |
[14] | Christophe Bouvier, Anne Crespy, Agnes L'Aour-Dufour, François-Noel Crès, François Delclaux, Arthur Marchandise, 2010. Modélisation hydrologique distribuée – Plate-forme ATHYS. In. Traité d'Hydraulique Environnementale, volume 9: Logiciels d'Ingénierie du cycle de l'eau, chapitre 7, 115-134 |
[15] | Arnold, J. G., Engel, B. A., and Srinivasan, R., 1993. Continuous-time, grid cell watershed model. Proc. of the 18-19 June 1993 Conf. Spokane, Washington, 267-278. |
[16] | Arnold J. G., Srinivasan R., Muttiah R. S. and Williams J. R., 1998. “Large Area Hydrological Modeling and Assessment. Part I: Model Development,” Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89. doi: 10.1111/j.1752-1688.1998.tb05961.x.. |
[17] | Smarzyńska K., Miatkowski Z. 2016. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland. Journal of Water and Land Development. No. 29 p. 31–47. DOI: 10.1515/jwld-2016-0010. |
[18] | Rafael A. Almeida., Silvio B. Pereira., Daniel B. F. Pinto. 2018. Calibration and validation of the swat hydrological model for the mucuri river basin. Journal of the Brazilian association of Agricultural Engineering. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v38n1p55-63/2018. |
[19] | Lucas M. Pontes., Marcelo R. Viola., Marx L. naves Silva., Diêgo F. A. Bispo., Nilton Curi. 2016. Hydrological modeling of tributaries of Cantareira system, south east brazil, with the swat model. Journal of the Brazilian association of Agricultural Engineering. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n6p1037-1049/2016 |
[20] | Bounhieng Vilaysane., Kaoru Takara., Pingping Luo., Inthavy Akkharath., WeiliDuan. 2015. Hydrological stream flow modeling for calibration and uncertaintyanalysis using SWAT model in the Xedone river basin, Lao PDR. Science Direct Procedia Environmental Sciences 28 (2015) 380 – 390. doi: 10.1016/j.proenv.2015.07.047. |
[21] | Saly Sambou, Honoré Dacosta et Jean-Emmanuel Paturel, 2018. Variabilité spatio-temporelle des pluies de 1932 à 2014 dans le bassin versant du fleuve Kayanga/Gêba (République de Guinée, Sénégal, Guinée-Bissau). Physio-Géo, Volume 12 | -1, 61-78. |
[22] | Oumar SENE, 1992. Ecoulement, crues et étiages dans le bassin versant de la Koulountou. Travail d'étude et de recherche mémoire de maitrise. Laboratoire d’hydrologie, département de géographie, Faculté des Lettres et Sciences Humaines, UCAD. |
[23] | Oeurng, C. and Sauvage, Sabine and Sanchez-Pérez, José-Miguel 2011. Assessment of hydrology, sediment and particulate organic carbon yieldin a large agricultural catchment using the SWAT model. Journal of Hydrology, vol. 401 (n°3-4). pp. 145-153. ISSN 0022-1694 |
[24] | Raksmey Ang., Chantha Oeurng. 2018. Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. National Water Research Center. Production and hosting by Elsevier B. V. Water Science 32 89–101. https://doi.org/10.1016/j.wsj.2017.12.002. |
[25] | A. M. Epelde, I. Cerro, J. M. Sánchez-Pérez, S. Sauvage, R. Srinivasan & I. Antigüedad, 2015. Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality, Hydrological Sciences Journal, 60: 5, 825-843, DOI: 10.1080/02626667.2014.967692. |
[26] | Abdelhamid Fadil, Hassan Rhinane, Abdelhadi kaoukaya, Youness kharchaf, Omar Alami Bachir, 2011. Hydrologic Modeling of the Bouregreg Watershed (Morocco Using GIS et SWAT Model. Journal of Geographic information System, 3, 279-289, doi: 10.4236/jgis.2011.34024. |
[27] | Mendas A., Errih M., Benhanifia K., Maidi M., Rahmani M. A. 2007. Hydrologic model and GIS to estimate hydrologic balance at watershed scale - Application to the watershed of Macta (Western Algerian). Proceedings of the 2nd IASME / WSEAS International Conference on Water Resources, Hydraulics & Hydrology, Portoroz, Slovenia. |
[28] | Abbasa, N., Wasimia, S. A. and Al-Ansari, N. (2016) Assessment of Climate Change Impact on Water Resources of Lesser Zab, Kurdistan, Iraq using SWAT Model. Engineering, 8, 697-715. http://dx.doi.org/10.4236/eng.2016.810064. |
[29] | Abbas, N., Wasimi, S. A. and Al-Ansari, N. (2016) Model-Based Assessment of Climate Change Impact on Isaac River Catchment, Queensland. Engineering, 8, 460-470. http://dx.doi.org/10.4236/eng.2016.87043. |
[30] | S. L. Neitsch, J. G. Arnold, J. R. Kiniry, J. R. Williams. 2009. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Ressources Institute Technical Report No. 406. Texas A&M University System, College Station, Texa, USA. |
[31] | Dao Nguyen Khoia, Vu Thi Thom. 2015. Parameter uncertainty analysis for simulating streamflow ina river catchment of Vietnam. Journal homepage: www.elsevier.com/locate/gecco, Global Ecology and Conservation 4, 538–548. http://dx.doi.org/10.1016/j.gecco.2015.10.007. |
[32] | Natalja Čerkasova, Georg Umgiesser, Ali Ertürk, 2018. Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change- A SWAT application. Vol. 124, pp 99-115. https://doi.org/1à.1016/j.ecoleng.2018.09.025. |
[33] | Da Silva, M. G., de Oliveira de Aguiar Netto, A., de Jesus Neves, R. J., do Vasco, A. N., Almeida, C. and Faccioli, G. G. (2015) Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. Journal of Environmental Protection, 6, 837-850. http://dx.doi.org/10.4236/jep.2015.68076. |
[34] | Abbaspour, K. C., 2011. Swat-Cup2: SWAT Calibration and Uncertainty Programs Manual Version 2, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag. Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland. 106 p. |
[35] | Jha, Manoj K., 2009. "Hydrologic Simulations of the Maquoketa River Watershed Using SWAT". CARD Working Papers. 530. http://lib.dr.iastate.edu/card_working papers/530. |
APA Style
Issa Lèye, Soussou Sambou, Moussé Landing Sané, Ibrahima Ndiaye, Didier Maria Ndione, et al. (2020). Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam. Journal of Water Resources and Ocean Science, 9(1), 29-41. https://doi.org/10.11648/j.wros.20200901.14
ACS Style
Issa Lèye; Soussou Sambou; Moussé Landing Sané; Ibrahima Ndiaye; Didier Maria Ndione, et al. Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam. J. Water Resour. Ocean Sci. 2020, 9(1), 29-41. doi: 10.11648/j.wros.20200901.14
AMA Style
Issa Lèye, Soussou Sambou, Moussé Landing Sané, Ibrahima Ndiaye, Didier Maria Ndione, et al. Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam. J Water Resour Ocean Sci. 2020;9(1):29-41. doi: 10.11648/j.wros.20200901.14
@article{10.11648/j.wros.20200901.14, author = {Issa Lèye and Soussou Sambou and Moussé Landing Sané and Ibrahima Ndiaye and Didier Maria Ndione and Seïdou Kane and Samo Diatta and Raymond Diédhiou and Mohamed Talla Cissé}, title = {Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam}, journal = {Journal of Water Resources and Ocean Science}, volume = {9}, number = {1}, pages = {29-41}, doi = {10.11648/j.wros.20200901.14}, url = {https://doi.org/10.11648/j.wros.20200901.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wros.20200901.14}, abstract = {Hydrological modeling of ungauged basins is important and imperative for policymakers and stakeholders in water management. The Kayanga river upstream from the Niandouba dam is subject to extreme pressure caused by natural and anthropogenic factors. The hydro system Niandouba Dam and Confluent Dam are used to providing water for the irrigated perimeters in Anambe. Since there is no data available to evaluate the water resources entering the Niandouba Dam, we used Soil and Water Assessment Tools (SWAT) to set up a hydrological model in the ungauged basin of Kayanga river upstream Niandouba dam. A regionalization approach has been used to predict the river discharge at Niandouba watershed upstream of the Niandouba dam. SWAT model has been calibrated from 01/01/2001 to 31/12/2001 and validated from 01/01/2002 to 31/12/2002, with a daily scale on the Koulountou watershed. During the calibration period, the criteria of goodness of fit are respectively 0.87 for Nash-Sutcliffe Efficiency coefficient (NSE), 0.87 for coefficient of determination (R2), -1.6% for Percent Bias (PBIAS) and 0.36 for Standard Deviation Ratio (RSR). In the validation period, we have found a Nash-Sutcliffe Efficiency coefficient (NSE) of 0.62, a coefficient of determination (R2) of 0.77, a Percent Bias (PBIAS) of +35.9%, Standard Deviation Ratio (RSR) of 0.62. These parameters have been used to generate flows at the entrance of the Niandouba Dam.}, year = {2020} }
TY - JOUR T1 - Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam AU - Issa Lèye AU - Soussou Sambou AU - Moussé Landing Sané AU - Ibrahima Ndiaye AU - Didier Maria Ndione AU - Seïdou Kane AU - Samo Diatta AU - Raymond Diédhiou AU - Mohamed Talla Cissé Y1 - 2020/03/10 PY - 2020 N1 - https://doi.org/10.11648/j.wros.20200901.14 DO - 10.11648/j.wros.20200901.14 T2 - Journal of Water Resources and Ocean Science JF - Journal of Water Resources and Ocean Science JO - Journal of Water Resources and Ocean Science SP - 29 EP - 41 PB - Science Publishing Group SN - 2328-7993 UR - https://doi.org/10.11648/j.wros.20200901.14 AB - Hydrological modeling of ungauged basins is important and imperative for policymakers and stakeholders in water management. The Kayanga river upstream from the Niandouba dam is subject to extreme pressure caused by natural and anthropogenic factors. The hydro system Niandouba Dam and Confluent Dam are used to providing water for the irrigated perimeters in Anambe. Since there is no data available to evaluate the water resources entering the Niandouba Dam, we used Soil and Water Assessment Tools (SWAT) to set up a hydrological model in the ungauged basin of Kayanga river upstream Niandouba dam. A regionalization approach has been used to predict the river discharge at Niandouba watershed upstream of the Niandouba dam. SWAT model has been calibrated from 01/01/2001 to 31/12/2001 and validated from 01/01/2002 to 31/12/2002, with a daily scale on the Koulountou watershed. During the calibration period, the criteria of goodness of fit are respectively 0.87 for Nash-Sutcliffe Efficiency coefficient (NSE), 0.87 for coefficient of determination (R2), -1.6% for Percent Bias (PBIAS) and 0.36 for Standard Deviation Ratio (RSR). In the validation period, we have found a Nash-Sutcliffe Efficiency coefficient (NSE) of 0.62, a coefficient of determination (R2) of 0.77, a Percent Bias (PBIAS) of +35.9%, Standard Deviation Ratio (RSR) of 0.62. These parameters have been used to generate flows at the entrance of the Niandouba Dam. VL - 9 IS - 1 ER -