| Peer-Reviewed

Synthesis, Characterization, Crystal Structure and Quantum Chemical Calculations of 2-oxo-2H-chromen-3-yl Acetate

Received: 14 March 2021     Accepted: 6 April 2021     Published: 16 April 2021
Views:       Downloads:
Abstract

This paper is focused on a combined experimental and theoretical study of 3-substituted coumarin derivative, the 2-oxo-2H-chromen-3-yl acetate (I). The compound was synthesized by reacting chroman-2,3-dione and acetic anhydride in dried diethyl ether in the presence of dried pyridine and crystallized in the orthorhombic crystal system with Pbca space group. The lattice parameters of the structure are a=14.6770 (1), b=7.1079 (1), c=17.6767 (2) Å, α=β=γ=90° with 8 molecules per unit cell (Z=8). The compound has been characterized structurally by Spectroscopy utilizing 1H NMR, 13C NMR and IR techniques and by crystallography using the X-Ray diffraction (XRD) analysis. In the crystallographic study, the positions of the atoms were determined by direct methods and refined to a final R value of 0.038 for 1768 independent reflections. The stabilization of the structure is provided by intermolecular C-H•••O hydrogen bonds extending along [010] direction. Likewise, the presence and nature of intermolecular contacts are determined by the 3-D molecular Hirshfeld surface and 2-D fingerprint plot analysis which indicate the main contributions to the Hirshfeld surface, 38.7% for O ••• H and 28.7% for H •• H. Moreover, the molecular geometry of (I) was as well minimized utilizing density functional theory (DFT/RB3LYP), the frequency calculations with RB3LYP method, the basic ab initio model i.e the restricted Hartree-Fock (RHF) and the exchange component of Perdew and Wang’s 1991 functional B3PW91 methods with the 6-311++G(d, p) basis set in ground state. The derived structural parameters highlight very good correlation with the crystallographic results. Frontier molecular orbitals (HOMO-LUMO), their energy gap, the non-linear optical effects (NLO) and related reactive parameters were also computed to better apprehend the properties of the molecule.

Published in Science Journal of Chemistry (Volume 9, Issue 2)
DOI 10.11648/j.sjc.20210902.11
Page(s) 29-44
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

3-substituted Coumarin Derivative, C—H…O Hydrogen Bonds, Hirshfeld Surface Analysis, Quantum Chemical Computations, Crystal Structure

References
[1] Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L. & Lee, K.-H.; (2003) Med. Res. Rev. 23, 322–345.
[2] Yu, D.; Morris-Natschke, S. L. & Lee, K.-H.; (2007) Med. Res. Rev. 27, 108–132.
[3] Abernethy, J. L.; (1969). J. Chem. Educ. 46, 561–568.
[4] Vukovic, N.; Sukdolak, S.; Solujic, S. & Niciforovic, N.; (2010) Arch. Pharm. Res. 33, 5–15.
[5] Wang, M.; Wang, L.; Li, Y. & Li, Q.; (2001) Transition Met. Chem. 26, 307–310.
[6] Basanagouda, M.; Kulkarni, M. V.; Sharma, D.; Gupta, V. K.; Pranesha, P.; Sandhyarani, P. and Rasal V. P.; (2009) J. Chem. Sci., 121, 485–495.
[7] Emmanuel-Giota, A. A.; Fylaktakidou, K. C.; Litinas, K. E.; Nicolaides, D. N. and Hadjipavlou-Litina, D. J.; (2001) Heterocycl. Chem., 38, 717–722.
[8] Abou, A.; Djandé, A.; Kakou-Yao, R.; Saba, A. and Tenon, A. J.; (2013) Acta Cryst., E69, o1081–o1082.
[9] Ouédraogo, M.; Abou, A.; Djandé, A.; Ouari, O. and Zoueu, T. J.; (2018) Acta Cryst., E74, 530–534.
[10] Rigaku, OD.; (2015) CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
[11] Burla, M. C.; Caliandro, R.; Carrozzini, B.; Cascarano, G. L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A. and Polidori, G., J.; (2015) Appl. Cryst., 48, 306–309.
[12] Farrugia, L. J.; (2012) J. Appl. Cryst., 45, 849–854.
[13] Sheldrick, G. M.; (2015) Acta Cryst., C71, 3–8.
[14] Spek, A. L.; (2009) Acta Cryst., D65, 148–155.
[15] Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D. and Spackman, M. A.; (2012) Crystal Explorer. The University of Western Australia.
[16] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; et al.; (2013) GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.
[17] Allen, F. H.; Walson, D. G.; Orpen, A. G.; Taylor, R.; (1987) J. Chem. Soc., Perkin Trans. II, S1-S9.
[18] Gomes, L. R.; Low, J. N.; Fonseca, A.; Matos, M. J. and Borges, F.; (2016) Acta Cryst., E72, 926–932.
[19] Ziki, E.; Yoda, J.; Djandé, A.; Saba, A. and Kakou-Yao, R.; (2016) Acta Cryst., E72, 1562–1564.
[20] Cremer, D. & Pople, J.; (1975). J. Am. Chem. Soc. 97, 1354–1358.
[21] Bitzer, S. R.; Visentin, C. L.; Hörner, M.; Nascimento, M. A. C. and Filgueiras, C. A. L.; (2017) J. Mol. Struct., 1130, 165–173.
[22] Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E. and Hutchison, G. R.; (2012) Journal of Cheminformatics, 4 (1), 17.
[23] Murray, J. S.; Politzer, P.; The electrostatic potential: an overview. WIREs Comp Mol Sci, 2011, 1: 153–163
[24] Politzer, P. and Murray, J. S.; (2002) Theoretical Chemistry Accounts, 108 (3), 134–142.
[25] Fleming, I.; (1976) Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, London, UK.
[26] Pearson, R. G.; (1986) Proceedings of the National Academy of Sciences of the United States of America, 83 (22), 8440–8841.
[27] Mulliken, R. S.; (1955) The Journal of Chemical Physics, 23 (10), 1833–1840.
[28] Mulliken, R. S.; (1955) The Journal of Chemical Physics, 23 (10), 1841–1846.
[29] Mulliken, R. S.; (1955) The Journal of Chemical Physics, 23 (12), 2338–2342.
[30] Mulliken, R. S.; (1955 The Journal of Chemical Physics, 23 (12), 2343–2346.
[31] Janarthanan, S.; Samuel, R. S.; Rajan, Y. C.; Pandi, S.; J. Therm. Anal. Calorim., 2012, 107, 1213-1217.
[32] Bhagavannarayana, G.; Riscob, B.; Mohd, S.; Mater. Chem. Phys., 2011, 126, 20-23.
[33] Gomes, E. D.; Venkatraman, V.; Nogueira, E.; Belsley, M.; Garrido, S. P.; Mater Syn., 2000, 115, 225–228).
[34] Zhang, R.; Du, B.; Sun, G. and Sun, Y.; (2010) Spectrochimica Acta A, vol. 75, no. 3, pp. 1115–1124.
[35] Yazıcı, S.; Albayrak,.; Gümrükçüolu, I.; enel, I. and Büyükgüngör, O.; (2011) Journal of Molecular Structure, vol. 985, no. 2-3, pp. 292–298.
[36] Chemia, D. S. and Zyss, J.; Non Linear Optical Properties of Organic Molecules and Crystal, Academic Press, New York, NY, USA, 1987.
[37] Zyss, J.; Molecular Non Linear Optics, Academic Press, Boston, Mass, USA, 1994.
[38] Ben Ahmed, A.; Feki, H.; Abid, Y. and Minot, C.; (2010) Spectrochimica Acta A, vol. 75, no. 4, pp. 1315–1320.
[39] Suponitsky, K. Y.; Tafur, S; Masunov, A. E.; (2008) Journal of Chemical Physics, 129, 044109-11.
[40] Avci, D.; Başoğlu, A.; Atalay, Y.; (2011) International Journal of Quantum Chemistry, 111, 1, 130-147.
[41] Machado, A. E. H.; Neto, N. M. B.; Ueno, L. T.; et al.; (2008) Journal of Photochemistry Photobiology A-Chemistry, 199, 1, 23–33.
[42] Abraham, J. P.; Sajan, D.; Hubert, Joe I. H. and Jayakumar, V. S.; (2008) Spectrochimica Acta Part A, 71, 2, 355-367.
[43] Karamanis, P.; Pouchan, C. and Maroulis, G.; (2008) Physical Review A, 77, 013201-013208.
[44] Ben Ahmed, A.; Feki, H.; Abid, Y.; Boughzala, H. and Mlayah, A.; (2008) Journal of Molecular Structure, 888, 1-3, 180-186.
[45] Nkungli, N. K.; Ghogomu, J. N.; (2016) J. Theor. Chem., 2016, 1–19.
[46] Pluta, T.; Sadlej, A. J.; (2001) J. Chem. Phys., 114, 136.
[47] Song, X.; Farwell, S. O.; (2004) J. Anal. Appl. Pyrolysis, 71, 901–915.
[48] Eme, A.; Günedodu Sadinç, S.; (2014) BAÜ Fen Bil. Enst. Dergisi Cilt 16 (1) 47-75.
Cite This Article
  • APA Style

    Akoun Abou, Siaka Sosso, Affiba Florance Kouassi, Thouakesseh Jeremie Zoueu, Abdoulaye Djande, et al. (2021). Synthesis, Characterization, Crystal Structure and Quantum Chemical Calculations of 2-oxo-2H-chromen-3-yl Acetate. Science Journal of Chemistry, 9(2), 29-44. https://doi.org/10.11648/j.sjc.20210902.11

    Copy | Download

    ACS Style

    Akoun Abou; Siaka Sosso; Affiba Florance Kouassi; Thouakesseh Jeremie Zoueu; Abdoulaye Djande, et al. Synthesis, Characterization, Crystal Structure and Quantum Chemical Calculations of 2-oxo-2H-chromen-3-yl Acetate. Sci. J. Chem. 2021, 9(2), 29-44. doi: 10.11648/j.sjc.20210902.11

    Copy | Download

    AMA Style

    Akoun Abou, Siaka Sosso, Affiba Florance Kouassi, Thouakesseh Jeremie Zoueu, Abdoulaye Djande, et al. Synthesis, Characterization, Crystal Structure and Quantum Chemical Calculations of 2-oxo-2H-chromen-3-yl Acetate. Sci J Chem. 2021;9(2):29-44. doi: 10.11648/j.sjc.20210902.11

    Copy | Download

  • @article{10.11648/j.sjc.20210902.11,
      author = {Akoun Abou and Siaka Sosso and Affiba Florance Kouassi and Thouakesseh Jeremie Zoueu and Abdoulaye Djande and Olivier Ouari},
      title = {Synthesis, Characterization, Crystal Structure and Quantum Chemical Calculations of 2-oxo-2H-chromen-3-yl Acetate},
      journal = {Science Journal of Chemistry},
      volume = {9},
      number = {2},
      pages = {29-44},
      doi = {10.11648/j.sjc.20210902.11},
      url = {https://doi.org/10.11648/j.sjc.20210902.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20210902.11},
      abstract = {This paper is focused on a combined experimental and theoretical study of 3-substituted coumarin derivative, the 2-oxo-2H-chromen-3-yl acetate (I). The compound was synthesized by reacting chroman-2,3-dione and acetic anhydride in dried diethyl ether in the presence of dried pyridine and crystallized in the orthorhombic crystal system with Pbca space group. The lattice parameters of the structure are a=14.6770 (1), b=7.1079 (1), c=17.6767 (2) Å, α=β=γ=90° with 8 molecules per unit cell (Z=8). The compound has been characterized structurally by Spectroscopy utilizing 1H NMR, 13C NMR and IR techniques and by crystallography using the X-Ray diffraction (XRD) analysis. In the crystallographic study, the positions of the atoms were determined by direct methods and refined to a final R value of 0.038 for 1768 independent reflections. The stabilization of the structure is provided by intermolecular C-H•••O hydrogen bonds extending along [010] direction. Likewise, the presence and nature of intermolecular contacts are determined by the 3-D molecular Hirshfeld surface and 2-D fingerprint plot analysis which indicate the main contributions to the Hirshfeld surface, 38.7% for O ••• H and 28.7% for H •• H. Moreover, the molecular geometry of (I) was as well minimized utilizing density functional theory (DFT/RB3LYP), the frequency calculations with RB3LYP method, the basic ab initio model i.e the restricted Hartree-Fock (RHF) and the exchange component of Perdew and Wang’s 1991 functional B3PW91 methods with the 6-311++G(d, p) basis set in ground state. The derived structural parameters highlight very good correlation with the crystallographic results. Frontier molecular orbitals (HOMO-LUMO), their energy gap, the non-linear optical effects (NLO) and related reactive parameters were also computed to better apprehend the properties of the molecule.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis, Characterization, Crystal Structure and Quantum Chemical Calculations of 2-oxo-2H-chromen-3-yl Acetate
    AU  - Akoun Abou
    AU  - Siaka Sosso
    AU  - Affiba Florance Kouassi
    AU  - Thouakesseh Jeremie Zoueu
    AU  - Abdoulaye Djande
    AU  - Olivier Ouari
    Y1  - 2021/04/16
    PY  - 2021
    N1  - https://doi.org/10.11648/j.sjc.20210902.11
    DO  - 10.11648/j.sjc.20210902.11
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 29
    EP  - 44
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20210902.11
    AB  - This paper is focused on a combined experimental and theoretical study of 3-substituted coumarin derivative, the 2-oxo-2H-chromen-3-yl acetate (I). The compound was synthesized by reacting chroman-2,3-dione and acetic anhydride in dried diethyl ether in the presence of dried pyridine and crystallized in the orthorhombic crystal system with Pbca space group. The lattice parameters of the structure are a=14.6770 (1), b=7.1079 (1), c=17.6767 (2) Å, α=β=γ=90° with 8 molecules per unit cell (Z=8). The compound has been characterized structurally by Spectroscopy utilizing 1H NMR, 13C NMR and IR techniques and by crystallography using the X-Ray diffraction (XRD) analysis. In the crystallographic study, the positions of the atoms were determined by direct methods and refined to a final R value of 0.038 for 1768 independent reflections. The stabilization of the structure is provided by intermolecular C-H•••O hydrogen bonds extending along [010] direction. Likewise, the presence and nature of intermolecular contacts are determined by the 3-D molecular Hirshfeld surface and 2-D fingerprint plot analysis which indicate the main contributions to the Hirshfeld surface, 38.7% for O ••• H and 28.7% for H •• H. Moreover, the molecular geometry of (I) was as well minimized utilizing density functional theory (DFT/RB3LYP), the frequency calculations with RB3LYP method, the basic ab initio model i.e the restricted Hartree-Fock (RHF) and the exchange component of Perdew and Wang’s 1991 functional B3PW91 methods with the 6-311++G(d, p) basis set in ground state. The derived structural parameters highlight very good correlation with the crystallographic results. Frontier molecular orbitals (HOMO-LUMO), their energy gap, the non-linear optical effects (NLO) and related reactive parameters were also computed to better apprehend the properties of the molecule.
    VL  - 9
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Training and Research in Electrical and Electronic Engineering, Research Team: Instrumentation, Image and Spectroscopy, Félix Houphou?t-Boigny National Polytechnic Institute, Yamoussoukro, C?te d’Ivoire

  • Department of Chemistry, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso

  • Department of Physics, Laboratory of Fundamental and Applied Physics, University of Abobo Adjamé—Nangui Abrogoua, Abidjan, C?te d’Ivoire

  • Department of Training and Research in Electrical and Electronic Engineering, Research Team: Instrumentation, Image and Spectroscopy, Félix Houphou?t-Boigny National Polytechnic Institute, Yamoussoukro, C?te d’Ivoire

  • Department of Chemistry, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso

  • Department of Chemistry, Radical Chemistry Institute, Research Team SREP, Aix-Marseille University, Marseille, France

  • Sections