| Peer-Reviewed

Review on In-depth Analysis of the Passive Films of W-xTi Alloys by Angle Resolved X-Ray Photoelectron Spectroscopy

Received: 29 February 2020     Accepted: 16 March 2020     Published: 28 April 2020
Views:       Downloads:
Abstract

Spontaneously passivated sputter-deposited W-22Ti and W-58Ti alloys showed higher corrosion resistance than those of tungsten and titanium metals in 12 M HCl solution open to air at 30°C. Average corrosion rates of W-(22-58)Ti alloys (that is, about 9.5-18.5 × 10-3 mm/y) were found to be about three and half orders of magnitude lower than titanium and even lower than that of tungsten metal. Such synergistic effect of the simultaneous additions of tungsten and titanium in the extremely high corrosion resistance properties of the sputter-deposited amorphous/nanocrystalline W-xTi alloys was investigated using angle resolved X-ray photoelectron spectroscopic (ARXPS) analyses. In-depth surface analyses of the thin passive films of the W-xTi alloys using angle resolved XPS analyses revealed that the high corrosion resistance of the amorphous/nanocrystalline W-xTi alloys is mostly due to the formation of homogeneous passive double oxyhydroxide films consisting of Wox and Ti4+ cations without any concentration gradient in-depth in 12 M HCl solution at 30°C. Consequently, titanium metal acts synergistically with tungsten in enhancing the spontaneous passivity as well as the high corrosion resistance of the sputter-deposited binary W-xTi alloys.

Published in Science Journal of Chemistry (Volume 8, Issue 2)
DOI 10.11648/j.sjc.20200802.12
Page(s) 28-35
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Depth-profiling, Corrosion-resistant, Sputter Deposit, Binary Alloys, Aggressive Environment, XPS

References
[1] L. A. Harris, Angular Dependences in Electron-excited Auger Emission, Surf. Sci., 1969, 15 (1), 77-93. https://doi.org/10.1016/0039-6028(69)90066-1
[2] W. A. Fraser, J. V. Florio, W. N. Delgass, W. D. Robertson, Surface Sensitivity and Angular Dependence of X-ray Photoelectron Spectra, Surf. Sci., 1973, 36 (2), 661-674. https://doi.org/10.1016/0039-6028(73)90410-X
[3] C. S. Fadley, Instrumentation for Surface Studies: XPS Angular Distributions, J. Electron Spectros. Rel. Phenom., 1974, 5 (1), 725-754. https://doi.org/10.1016/0368-2048(74)85048-6
[4] C. S. Fadley, X-ray Photoelectron Spectroscopy: Progress and Perspectives, J. Electron Spectros. Rel. Phenom., 2010, 178-179, 2-32. https://doi.org/10.1016/j.elspec.2010.01.006
[5] R. J. Baird, C. S. Fadley, X-ray Photoelectron Angular Distributions with Dispersion-compensating X-ray and Electron Optics, J. Electron Spectros. Rel. Phenom., 1974, 11 (1), 39-65. https://doi.org/10.1016/0368-2048(77)85047-0
[6] M. Pijolat, G. Hollinger, New Depth-profiling Method by Angular-dependent X-ray Photoelectron Spectroscopy, Surf. Sci. 1981, 105 (1), 114-128. https://doi.org/10.1016/0039-6028(81)90151-5
[7] S. Tougaard, A. Ignatiev, Concentration Depth Profiles by XPS; A New Approach, Surf. Sci., 1983, 129 (2-3), 355-365.. https://doi.org/10.1016/0039-6028(83)90186-3
[8] K. Siegbhahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johnssaon, T. Bergmark, S. E. Karlsson, I. Lindgren, B. Lindberg, ESCAAtomic, Molecular and Solid State Studied by Means of Electron Spectroscopy, Almquist and Wiksells, Uppsal, Sweden, 1967.
[9] I. N. Demchenko, Y. Melikhov, Y. Syryanyy, I. Zaytseva, P. Konstantynoy, M. Chernyshova, Effect of Argon Sputtering on XPS Depth-profiling Results of Si/Nb/Si, J. Electron Spectros. Rel. Phenom., 2018, 224, 17-22. https://doi.org/10.1016/j.elspec.2017.09.009
[10] S. R. Bare, A. Knop-Gericke, D. Teschner, M. Hävacker, R. Blume, T. Rocha, R. Schlögl, A. S. Y. Chan, N. Blackwell, M. E. Charochak, R. Veen, H. H. Brongersma, Surface Analysis of Zeolites: An XPS, Variable Kinetic Energy XPS, and Low Energy Ion Scattering Study, Surf. Sci., 2016, 648, 376-382. https://doi.org/10.1016/j.susc.2015.10.048
[11] S. Tougaard, Energy loss in XPS: Fundamental Processes and Applications for Quantification, Non-destructive Depth Profiling and 3D Imaging, J. Electron Spectros. Rel. Phenom., 2010, 178-179, 128-153. https://doi.org/10.1016/j.elspec.2009.08.005
[12] E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, A study of the Structure of a Passive Film Using Angle-resolved X-ray Photoelectron Spectroscopy, Corros. Sci., 1996, 38 (7), 1127-1140. https://doi.org/10.1016/0010-938X(96)81813-0
[13] P. Y. Park, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, The Corrosion Behavior of Sputter-deposited Mo-Ti Alloys in Concentrated Hydrochloric Acid, Corros. Sci., 1995, 38 (10), 1649-1667. https://doi.org/10.1016/S0010-938X(96)00041-8
[14] X. Y. Li, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, Spontaneously Passivated Films on Sputter-deposited Cr-Ti Alloys in 6 M HCl Solution, Corros. Sci., 1997, 39 (5), 935-948. https://doi.org/10.1016/S0010-938X(97)81159-6
[15] J. Bhattarai, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Electrochemical and XPS Studies of the Corrosion Behavior of Sputter-deposited Amorphous W-Zr Alloys in 6 and 12 M HCl Solutions, Corros. Sci., 1997, 39 (2), 355-375. https://doi.org/10.1016/S0010-938X(97)83351-3
[16] J. Bhattarai, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Electrochemical and XPS Studies of the Corrosion Behavior of Sputter-deposited W-Nb Alloys in Concentrated Hydrochloric Acid Solutions, Corros. Sci., 1998, 40 (1), 19-42. https://doi.org/10.1016/S0010-938X(97)00108-X
[17] J. Bhattarai, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Electrochemical and XPS Studies on the Passivation Behavior of Sputter-deposited W-Cr Alloys in 12 M HCl Solution, Corros. Sci., 1998, 40 (2-3), 155-175. https://doi.org/10.1016/S0010-938X(97)00106-6
[18] J. Bhattarai, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, The Passivation Behavior of Sputter-deposited W-Ta Alloys in 12 M HCl, Corros. Sci., 1998, 40 (4-5), 757-779. https://doi.org/10.1016/S0010-938X(97)00177-7
[19] P. Marcus, Surface Science Approach of Corrosion Phenomena, Electrochimica Acta, 1998, 43 (1-2), 109-118. https://doi.org/10.1016/S0013-4686(97)00239-9
[20] J. Bhattarai, Angle Resolver X-Ray Photoelectron Spectroscopic Analysis of the Passive Film of the Corrosion-Resistant W-32Zr Alloy in 12 M HCl Solution, Bangladesh J. Sci. Ind. Res., 2014, 49 (2), 103-110. http://dx.doi.org/10.3329/bjsir.v49i2.22004
[21] J. Bhattarai, X-ray Photoelectron Spectroscopic Analyses on the Corrosion-Resistant W-Cr-Ni Alloys in 12 M HCl, Trans. Mater. Res. Soc. Jpn., 2010, 35 (1), 1-6. https://doi.org/10.14723/tmrsj.35.1
[22] J. Bhattarai, A Non–destructive Compositional Analysis of Thin Surface Films Formed on W-xTa Alloys by Angle Resolved X-ray Photoelectron Spectroscopy, Bibechana, 2012, 8, 8-16. https://doi.org/10.3126/bibechana.v8i0.4784
[23] K. Hashimoto, Chemical Properties of Rapidly Solidified Alloys, in H. H. Liebermann (ed.) Rapidly Solidified Alloys; Processes, Structures, Properties, Applications, Marcel Dekker Inc., New York, 1993, pp. 591.
[24] S. Baral, J. Bhattarai, The Effect of Tantalum Addition on the Corrosion Behavior of W-xTa Alloys in 1 M NaOH Solution, Bibechana, 2014, 10, 1-8. https://dx.doi.org/10.3126/bibechana.v10i0.8363
[25] P. L. Kharel, S. P. Sah, J. Bhattarai, Roles of Alloying Elements on the Passivity of W-xCr-yNi Alloys in Aggressive Environments, Nepal J. Sci. Technol., 2013, 14 (2), 73-80. https://dx.doi.org/10.3126/njst.v14i2.10418
[26] J. Bhattarai, X-ray Photoelectron Spectroscopic Study on the Anodic Passivity of Sputter-deposited W-Nb Alloys in 12 M HCl Solution, J. Sci. Res., 2011, 3 (3), 467-480. https://dx.doi.org/10.3329/jsr.v3i3.7207
[27] B. R. Aryal, J. Bhattarai, Effects of Tungsten, Chromium and Zirconium on the Corrosion Behavior of Ternary Amorphous W-Cr-Zr Alloys in 1 M NaOH Solution, Sci. World, 2011, 9, 39-43. https://dx.doi.org/10.3126/sw.v9i9.5516
[28] J. Bhattarai, The Corrosion Behavior of Sputter-deposited Ternary W-Zr-(15-18)Cr Alloys in 12 M HCl, Afr. J. Pure Appl. Chem., 2011, 5 (8), 212-218.
[29] J. Bhattarai, Role of Alloying Elements on the Corrosion Behavior of Sputter-deposited Amorphous W-Cr-Zr Alloys in 0.5 M NaCl Solution, Sci. World, 2011, 9, 34-38 (2011). http://dx.doi.org/10.3126/sw.v9i9.5515
[30] P. Shrestha, J. Bhattarai, The Passivation Behavior of Sputter-deposited W-Zr Alloys in NaCl and NaOH Solutions, J. Nepal Chem. Soc., 2010, 25, 37-45. https://dx.doi.org/10.3126/jncs.v25i0.3283
[31] R. R. Kumal, J. Bhattarai, Roles of Alloying Elements on the Corrosion Behavior of Amorphous W-Zr-(15-33)Cr Alloys in 1 M NaOH Solution, J. Nepal Chem. Soc., 2010, 25, 93-100. https://dx.doi.org/10.3126/jncs.v25i0.3312
[32] J. Bhattarai, The Corrosion Behavior of Sputter-deposited Ternary Zr-(12-18)Cr-W Alloys in 12 M HCl Solution, J. Nepal Chem. Soc., 2010, 26, 13-21. https://doi.org/10.3126/jncs.v26i0.3625
[33] M. Basnet, J. Bhattarai, The Corrosion Behavior of Sputter-Deposited Nanocrystalline W-Cr Alloys in NaCl and NaOH Solution, J. Nepal Chem. Soc., 2010, 25, 53-61. https://doi.org/10.3126/jncs.v25i0.3300
[34] B. R. Aryal, J. Bhattarai, Effects of Alloying Elements on the Corrosion Behavior of Sputter-deposited Zr-(12-21)Cr-W Alloys in 0.5 M NaCl Solution, J. Nepal Chem. Soc., 2010, 25, 75-82. https://dx.doi.org/10.3126/jncs.v25i0.3305
[35] A. Khadka, J. Bhattarai, Corrosion and Electrochemical Properties of Nanocrystalline W-Mo Alloys in NaOH Solution, Nepal J. Sci. Technol., 2010, 11, 147-151. https://doi.org/10.3126/njst.v11i0.4137
[36] J. Bhattarai, The Effects of Chromium and Nickel on the Passivation Behavior of Sputter-deposited W-Cr-Ni Alloys in 12 M HCl Solution, Sci. World, 2009, 7 (7), 24-28. https://doi.org/10.3126/sw.v7i7.3819
[37] S. P. Sah, J. Bhattarai, The Electrochemical and Surface Studies of the Corrosion Behavior of Sputter-deposited W-Ni Alloys in 0.5 M NaCl Solution, J. Nepal Chem. Soc., 2009, 23, 45-53. https://dx.doi.org/10.3126/jncs.v23i0.2096
[38] J. Bhattarai, P. L. Kharel, Effects of Chromium and Tungsten on the Corrosion Behavior of Sputter-deposited W-Cr-Ni Alloys in 0.5 M NaCl Solution, J. Inst. Sci. Technol., 2009, 16, 141-151.
[39] P. L. Kharel, J. Bhattarai, The Corrosion Behavior of Sputter-deposited W-Cr-(4-15)Ni Alloys in NaOH Solution, J. Nepal Chem. Soc., 2009, 24, 3-11. https://dx.doi.org/10.3126/jncs.v24i0.2380
[40] H. Jha, J. Bhattarai, Corrosion Behavior of Sputter-deposited W-Nb Alloys in NaCl and NaOH Solutions, J. Alloys Compd., 2008, 456, 474-478. https://dx.doi.org/10.1016/j.jallcom.2007.02.100
[41] J. Bhattarai, Structure and Corrosion Behavior of Sputter-deposited W-Mo Alloys, J. Nepal Chem. Soc., 2006, 21, 19-25. https://doi.org/10.3126/jncs.v21i0.217
[42] J. Bhattarai, The Role of Tungsten in the Passivation Behavior of Sputter-deposited Cr-9W Alloy in 12 M HCl, J. Inst. Sci. Technol., 2002, 12, 125-138.
[43] J. Bhattarai, Electrochemical and XPS Studies on the Corrosion Behavior of Sputter-deposited Amorphous W-Ni Alloys in 12 M HCl, J. Nepal Chem. Soc., 2001, 20, 24-40.
[44] J. Bhattarai, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, The Influence of Concentration of Hydrochloric Acid Solutions on the Passivation Behavior of Sputter-Deposited Tungsten Rich W–Nb Alloys, Corros. Sci., 1998, 40 (11), 1897-1914. https://doi.org/10.1016/S0010-938X(98)00088-2
[45] J. Bhattarai, K. Hashimoto, X-Ray Photoelectron Spectroscopy Study in the Anodic Passivity of Sputter-Deposited Nanocrystalline W-Cr Alloys in 12 M HCl. Tribhuvan Univ. J., 1998, 21 (2), 1-16. https://doi.org/10.3126/tuj.v21i2.4568
[46] K. Asami, S. C. Chen, H. Habazaki, A. Kawashima, K. Hashimoto, A Photo-electrochemical and ESCA Study of Passivity of Amorphous Nickel-valve Metal Alloys, Corros. Sci., 1990, 31, 727-732. https://doi.org/10.1016/0010-938X(90)90188-B
[47] K. Asami, S. C. Chen, H. Habazaki, K. Hashimoto, The Surface Characterization of Titanium and Titanium-nickel Alloys in Sulfuric Acid, Corros. Sci., 1993, 35, 43-49. https://doi.org/10.1016/0010-938X(93)90131-Y
[48] J. H. Kim, E. Akiyama, H. Yoshioka, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, The Corrosion Behavior of Sputter-deposited Amorphous Titanium-chromium Alloys in 1 M and 6 M HCl Solutions, Corros. Sci., 1993, 34 (6), 975-987. https://doi.org/10.1016/0010-938X(93)90074-Q
[49] K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, E. Akiyama, The Role of Corrosion-resistant Alloying Elements in Passivity, Corros. Sci., 2007, 49 (1), 42-52. https://doi.org/10.1016/j.corsci.2006.05.003
[50] J. Bhattarai, The Corrosion Behavior of Sputter-deposited W-Ti Alloys in 0.5 M NaCl Solution, Nepal J. Sci. Technol., 2009, 10, 109-114. https://doi.org/10.3126/njst.v10i0.2899
[51] A. Sharmah, H. Jha, J. Bhattarai, The Passivation Behavior of Sputter-Deposited W-Ti Alloys in 1 M NaOH Solution, J. Nepal Chem. Soc., 2007, 22, 17-25. https://doi.org/10.3126/jncs.v22i0.518
[52] J. Bhattarai, K. Hashimoto, The Anodic Passivity of Sputter-deposited W-Ti Alloys in Hydrochloric Solutions, Nepal J. Sci. Technol., 2002, 4 (1), 37-43. http://www.nast.org.np/njst/index.php/njst/article/view/84/69
[53] J. Bhattarai, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, The Corrosion Behavior of Sputter-deposited Amorphous W-Ti Alloys in 6 M HCl Solution, Corros. Sci., 37 (12), 1995, 2071-2086. https://doi.org/10.1016/0010-938X(95)00120-9
[54] J. Bhattarai, The Confocal Scanning Laser Microscopic Study of the Pitting Corrosion on Sputter-deposited W-Ti Alloys in 1 M NaOH Solution, Tribhuvan Univ. J., 2009, 26 (1), 17-26. https://doi.org/10.3126/tuj.v26i1.2611
[55] A. A. El-Moneim, B. P. Zhang, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, The Corrosion Behavior of Sputter-deposited Amorphous Mn-Ti Alloys in 0.5 M NaCl Solution, Corros. Sci., 1997, 39 (2), 305-320. https://doi.org/10.1016/S0010-938X(96)00128-X
[56] Y.-D. Im, Y.-K. Lee, Effects of Mo Concentration on Re-crystallization Texture, Deformation Mechanism and Mechanical Properties of Ti-Mo Binary Alloys, J. Alloys Compd., 2020, 821, 153508. https://doi.org/10.1016/j.jallcom.2019.153508
[57] N. Kang, Y. Li, X. Lin, E. Feng, W. Huang, Microstructure and Tensile Properties of Ti-Mo Alloys Manufactured via Using Laser Powder Bed Fusion, J. Alloys Compd., 2019, 771, 877-884. https://doi.org/10.1016/j.jallcom.2018.09.008
[58] M. Callisti, F. D. Tichelaar, T. Polcar, In situ TEM Observations on the Structural Evolution of a Nanocrystalline W-Ti Alloy at Elevated Temperatures, J. Alloys Compd., 2018, 749, 1000-1008. https://doi.org/10.1016/j.jallcom.2018.03.335
[59] C.-L. Chen, Y. Zeng, Influence of Ti Content on Synthesis and Characteristics of W-Ti ODS Alloy, J. Nucl. Mater., 2016, 469, 1-8. https://doi.org/10.1016/j.jnucmat.2015.11.018
[60] M. Buzatu, V. Geantă, R. Ştefănoiu, M. Buţu, M.-I. Petrescu, M. Buzatu, I. Antoniac, G. Iacob, F. Niculescu, S.-I. Ghica, H. Moldovan, Investigations into Ti-15Mo-W Alloys Developed for Medical Applications, Materials, 2019, 12 (1), 147. https://doi.org/10.3390/ma12010147
[61] M. Buzatu, S. I. Ghica, M. I. Petrescu, V. Geantă, R. Stefănoiu, G. Iacob, M. Butu, E. Vasile, Obtaining and Characterization of the Ti15Mo5W Alloy for Biomedical Applications. Mater. Plast., 2017, 54 (3), 596-600. https://doi.org/10.37358/MP.17.3.4905
[62] B. D. Cullity, Elements of X-ray Diffraction, 2nd edition, Addison-Wesley Publ. Co. Inc., p. 101 (1977).
[63] B. N. Subedi, K. Amgain, S. Joshi, J. Bhattarai, Green Approach to Corrosion Inhibition Effect of Vitex negundo Leaf Extract on Aluminum and Copper Metals in Biodiesel and its Blend, Int. J. Corros. Scale Inhib., 2019, 8 (3), 744-759. https://doi.org/10.17675/2305-6894-2019-8-3-21
[64] M. Rana, S. Joshi, J. Bhattarai, Extract of Different Plants of Nepalese Origin as Green Corrosion Inhibitor for Mild Steel in 0.5 M NaCl Solution, Asian J. Chem., 2017, 29 (5) 1130-1134. https://doi.org/10.14233/ajchem.2017.20449
[65] K. Asami, K. Hashimoto, The X-ray Photo-electron Spectra of Several Oxides of Iron and Chromium, Corros. Sci., 1977, 17 (7), 559-570. https://doi.org/10.1016/S0010-938X(77)80002-4
[66] K. Asami, A Precisely Consistent Energy Calibration Method for X-ray Photoelectron Spectroscopy, J. Electron Spectros. Rel. Phenom., 1976, 9 (5), 469-478. https://doi.org/10.1016/0368-2048(76)80065-5
[67] A. Kawashima, K. Asami, K. Hashimoto, An XPS Study of Anodic Behavior of Amorphous Nickel-phosphorus Alloys Containing Chromium, Molybdenum or Tungsten in 1 M HCl, Corros. Sci., 1994, 24 (9), 807-823. https://doi.org/10.1016/0010-938X(84)90029-5
Cite This Article
  • APA Style

    Jagadeesh Bhattarai. (2020). Review on In-depth Analysis of the Passive Films of W-xTi Alloys by Angle Resolved X-Ray Photoelectron Spectroscopy. Science Journal of Chemistry, 8(2), 28-35. https://doi.org/10.11648/j.sjc.20200802.12

    Copy | Download

    ACS Style

    Jagadeesh Bhattarai. Review on In-depth Analysis of the Passive Films of W-xTi Alloys by Angle Resolved X-Ray Photoelectron Spectroscopy. Sci. J. Chem. 2020, 8(2), 28-35. doi: 10.11648/j.sjc.20200802.12

    Copy | Download

    AMA Style

    Jagadeesh Bhattarai. Review on In-depth Analysis of the Passive Films of W-xTi Alloys by Angle Resolved X-Ray Photoelectron Spectroscopy. Sci J Chem. 2020;8(2):28-35. doi: 10.11648/j.sjc.20200802.12

    Copy | Download

  • @article{10.11648/j.sjc.20200802.12,
      author = {Jagadeesh Bhattarai},
      title = {Review on In-depth Analysis of the Passive Films of W-xTi Alloys by Angle Resolved X-Ray Photoelectron Spectroscopy},
      journal = {Science Journal of Chemistry},
      volume = {8},
      number = {2},
      pages = {28-35},
      doi = {10.11648/j.sjc.20200802.12},
      url = {https://doi.org/10.11648/j.sjc.20200802.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20200802.12},
      abstract = {Spontaneously passivated sputter-deposited W-22Ti and W-58Ti alloys showed higher corrosion resistance than those of tungsten and titanium metals in 12 M HCl solution open to air at 30°C. Average corrosion rates of W-(22-58)Ti alloys (that is, about 9.5-18.5 × 10-3 mm/y) were found to be about three and half orders of magnitude lower than titanium and even lower than that of tungsten metal. Such synergistic effect of the simultaneous additions of tungsten and titanium in the extremely high corrosion resistance properties of the sputter-deposited amorphous/nanocrystalline W-xTi alloys was investigated using angle resolved X-ray photoelectron spectroscopic (ARXPS) analyses. In-depth surface analyses of the thin passive films of the W-xTi alloys using angle resolved XPS analyses revealed that the high corrosion resistance of the amorphous/nanocrystalline W-xTi alloys is mostly due to the formation of homogeneous passive double oxyhydroxide films consisting of Wox and Ti4+ cations without any concentration gradient in-depth in 12 M HCl solution at 30°C. Consequently, titanium metal acts synergistically with tungsten in enhancing the spontaneous passivity as well as the high corrosion resistance of the sputter-deposited binary W-xTi alloys.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Review on In-depth Analysis of the Passive Films of W-xTi Alloys by Angle Resolved X-Ray Photoelectron Spectroscopy
    AU  - Jagadeesh Bhattarai
    Y1  - 2020/04/28
    PY  - 2020
    N1  - https://doi.org/10.11648/j.sjc.20200802.12
    DO  - 10.11648/j.sjc.20200802.12
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 28
    EP  - 35
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20200802.12
    AB  - Spontaneously passivated sputter-deposited W-22Ti and W-58Ti alloys showed higher corrosion resistance than those of tungsten and titanium metals in 12 M HCl solution open to air at 30°C. Average corrosion rates of W-(22-58)Ti alloys (that is, about 9.5-18.5 × 10-3 mm/y) were found to be about three and half orders of magnitude lower than titanium and even lower than that of tungsten metal. Such synergistic effect of the simultaneous additions of tungsten and titanium in the extremely high corrosion resistance properties of the sputter-deposited amorphous/nanocrystalline W-xTi alloys was investigated using angle resolved X-ray photoelectron spectroscopic (ARXPS) analyses. In-depth surface analyses of the thin passive films of the W-xTi alloys using angle resolved XPS analyses revealed that the high corrosion resistance of the amorphous/nanocrystalline W-xTi alloys is mostly due to the formation of homogeneous passive double oxyhydroxide films consisting of Wox and Ti4+ cations without any concentration gradient in-depth in 12 M HCl solution at 30°C. Consequently, titanium metal acts synergistically with tungsten in enhancing the spontaneous passivity as well as the high corrosion resistance of the sputter-deposited binary W-xTi alloys.
    VL  - 8
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal

  • Sections