In the present study, the effects of different dietary protein levels on salema porgy, Sarpa salpa (Linnaeus, 1758) juveniles were investigated. Six iso-caloric (20 kJ/g diet) diets with increasing protein levels (30, 37, 40, 47, 50, and 57%) were formulated. Each test diet was randomly fed to triplicate groups of 13 juvenile fish (initial mean weight 19.28±0.13 g) to satiety over 90 days. Growth performance and feed utilization were best with low dietary protein levels of 30 and 37%, but decreased with diets containing protein levels over 40%. Ammonia nitrogen excretion showed an increasing trend as dietary protein levels gradually increased, whereas retention rates of ammonia nitrogen per intake were highest in the low protein groups of 30 or 37%. The analyses of specific growth rate by broken-line regression indicated that the optimal dietary level of protein for salema porgy juvenile were 33.6% under the conditions applied in this study. As a result, S. salpa demonstrated better growth with low protein diets, showing that this marine fish could be a promising candidate for a sustainable and environment friendly aquaculture industry.
Published in | Journal of Food and Nutrition Sciences (Volume 5, Issue 3) |
DOI | 10.11648/j.jfns.20170503.17 |
Page(s) | 107-115 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Salema Sarpa salpa, Protein Requirement, Growth Performance, Feed Efficiency, Nitrogen Retention
[1] | FAO, Fisheries and Aquaculture Information and Statistics Branch, Food and Agriculture Organization of the United Nations, Global Production Statistics, http://www.fao.org/fishery/statistics/global-production/en, 2016. |
[2] | United Nations, Probabilistic population projections based on the World population prospects: The 2015 Revision. United Nations, Population Division, DESA, http://esa.un.org/unpd/ppp/, 2015. |
[3] | A. Criscoli, F. Colloca, P. Carpentieri, A. Belluscio, and G. Ardizzone, “Observation on the reproductive cycle, age and growth of the salema, Sarpa salpa (Osteichthyes: Sparidae) along the western central coast of Italy,” Sci. Mar., vol. 70, pp. 131-138, 2006. |
[4] | L. Steele, K. M. Darnell, J. Cebrián, and J. L. Sanchez-Lizaso, “Sarpa salpa Herbivory on shallow reaches of Posidonia oceanica beds,” Anim. Biodivers. Conserv., vol. 37(1), pp. 49-57, 2014. |
[5] | J. L. B. Smith, and M. M. Smith, “Sparidae,” in Sea Fishes, M. M. Smith and P. C. Heemstra, Eds. Smiths' Berlin: Springer-Verlag, 1986, pp. 580-594. |
[6] | M. L. Bauchot, and J. C. Hureau, “Sparidae,” in Checklist of the fishes of the Eastern Tropical Atlantic Catalogue des poissons de l’Atlantique tropical oriental (Clofeta), vol. III, J. C. Quéro, J. C. Hureau, C. Karrer, A. Post, L. Saldanh, Eds. Paris: Unesco, 1990, pp. 790-812. |
[7] | A. Colorni, and A. Diamant, “Infectious diseases of warmwater fish in marine and brackish waters,” in Diseases and Disorders of Finfish in Cage Culture, 2nd ed., P. T. K. Woo, and D. W. Bruno, Eds. Wallingford UK: CABI Publishing, 2014, pp. 155-192. |
[8] | S. Msangi, M. Kobayashi, M. Batka, S. Vannuccini, M. M. Dey, and J. L. Anderson, Fish to 2030. Prospects for Fisheries and Aquaculture. Washington, USA: The World Bank Publication, report no. 83177-GLB, 2013. |
[9] | I. Nengas, M. N. Alexis, and S. J. Davies, “Partial substitution of fishmeal with soybean meal products and derivatives in diets for gilthead seabream Sparus aurata (L.),” Aquac. Res., vol. 27, pp. 147-156, 1996. |
[10] | A. G. J. Tacon, and M. Metian, “Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects,” Aquaculture, vol. 285, pp. 146-158, 2008. |
[11] | M. Yigit, S. Ergün, A. Türker, B. Harmantepe, and A. Erteken, “Evaluation of soybean meal as a protein source and its effect on growth and nitrogen utilization of black sea turbot (psetta maeotica) juveniles. J. Mar. Sci. Technol.-TA, vol. 18(5), pp. 682-688, 2010. |
[12] | N. Neofitou, “Waste feed from fish farms of the Eastern Mediterranean and attraction of wild fish,” Universal J. Geosci., vol. 4(5), pp. 112-115, 2016. |
[13] | M. M. Villamil, J. M. Lorenzo, J. G. Pajelo, A. Ramos, and J. Coca, “Aspects of the history of salema, Sarpa salpa (Pisces, Sparidae), off the Canarian Arcipelago (central-east Atlantic),” Environ. Biol. Fish., vol. 63, pp. 183-192, 2002. |
[14] | S. Matić-Skoko, M. Kraljević, J. Dulčić, and A. Pallaoro, “Growth of juvenile salema, Sarpa salpa (Teleostei: Sparidae), in the Kornati Archipelago, eastern Adriatic Sea,” Sci. Mar., vol. 68(3), pp. 411-417, 2004. |
[15] | T. Dobroslavić, A. Zlatovié, V. Bartulović, D. Lučić, and B. Glamuzina, “Diet overlap of juvenile salema (Sarpa salpa), bogue (Boops boops) and common two-banded sea bream (Diplodus vulgaris) in the south-eastern Adriatic,” J. Appl. Ichthyol., vol. 29, pp. 181-185, 2013. |
[16] | B. Bayhan, and A. Kara, “Length-weight and length-length relationships of the salema Sarpa salpa (Linnaeus, 1758) in Izmir Bay (Aegean Sea of Turkey),” Pak. J. Zool., vol. 47(4), pp. 1141-1146, 2015. |
[17] | AOAC, Association of Official Analytical Chemists. Maryland, USA: Official Methods of Analysis of AOAC International, 1998. |
[18] | J. R. Brett, and T. D. D. Grove, “Physiological energetics in fish”, in Fish Physiology, W. S. Hoar, D. J. Randall, and J. R. Brett, Eds. New York: Academic Press, 1979, pp. 279-352. |
[19] | M. Yigit, B. Celikkol, M. Bulut, J. Decew, H. B. Ozalp, S. Yilmaz, H. Kaya, B. Kizilkaya, O. Hisar, H. Yildiz, Ü. Yigit, M. Sahinyilmaz, R. L., Dwyer, “Monitoring of trace metals, biochemical composition and growth of Axillary seabream (Pagellus acarne Risso, 1827) in offshore copper alloy mesh cages,” Mediterr. Mar. Sci., vol. 17(2), pp. 396-403, 2016. |
[20] | A. Y. Korkut, and D. Balkı, “Effects of different feeding rations on growth of gilthead seabream (Sparus aurata L., 1758) in net cages,” Ege J. Fish. Aquat. Sci., vol. 21, pp. 235-238, 2004. |
[21] | R. Sá, P. Pousao-Ferreira, and A. Olive-Teles, “Dietary protein requirement of White sea bream (Diplodus sargus) juveniles. Aquacult. Nutr., vol. 14, pp. 309-317, 2008. |
[22] | F. F. Coutinho, “Dietary protein requirement and intermediary metabolism response to protein/carbohydrate ratio in zebra seabream (Diplodus cervinus, Lowe 1838) juveniles,” Master of Science Thesis. Porto Portugal: Faculty of Science, University of Porto, 2012. |
[23] | R. O. A. Ozório, L. M. P. Valente, S. Correia, P. Pousao-Ferreira, A. Damasceno-Oliveira, C. Escorcio, and A. Olivia-Teles, “Protein requirement for maintenance and maximum growth of two-banded seabream (Diplodus vulgaris) juveniles. Aquacult. Nutr., 15, 85-93. |
[24] | Coutinho, F., Peres, H., Guerreiro, I., Pousão-Ferreira, P., & OlivaTeles, A. (2012). Dietary protein requirement of sharpsnout sea bream (Diplodus puntazzo, Cetti 1777) juveniles. Aquaculture, 356, 391-397. |
[25] | J. Bregnballe, “A guide to recirculation aquaculture, an introduction to the new environmentally friendly and highly productive closed fish farming systems,” Publication of Food and Agriculture Organization of the United Nations (FAO) and EUROFISH International Organisation, http://www.fao.org/3/a-i4626e.pdf, 2015. |
[26] | B. Hossu, A. Y. Korkut, and S. Salnur, “Investigation on feeding tables for seabass (Dicentrarchus labrax L., 1758) in net-cage (Pinar Marine Company) culture. Mediterranean Fish Nutrition, in Cahiers Options Méditerranéennnes, vol. 63, D. Montero, B. Basurco, I. Nengas, M. Alexis and M. Izquierdo, Eds. Zaragoza: CIHEAM Centre International de Hautes Etudes Agronomiques Méditerranéennes/HCMR Hellenic National Centre for Marine Research, 2005, pp. 158. |
[27] | M. M. Taher, “Effect of fish density and feeding rates on growth and food conversion of gilthead seabream (Sparus aurata Linnaeus, 1758). Iraq Aquacult. J., vol. 1, pp. 25-35, 2007. |
[28] | M. Yigit, M. Bulut, S. Ergün, D. Güroy, M. Karga, O. S., Kesbiç, S. Yılmaz, Ü. Acar, and B. Güroy, “Utilization of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. J. FisheriesSciences.com, vol. 6(1), pp. 63-73, 2012. |
[29] | I. Lupatsch, G. W. M. Kissil, D. Sklan, and E. Pfeffer, “Effects of varying dietary protein and energy supply on growth, body composition and protein utilization in gilthead sea bream (Sparus aurata L.). Aquacult. Nutr., vol. 7, pp. 71-80, 2001. |
[30] | M. Bulut, M. Yigit, S. Ergün, O. S. Kesbic, Ü. Acar, N. Gültepe, M. Karga, S. Yılmaz, and D. Güroy, “Evaluation of dietary protein and lipid requirements of two-banded seabream (Diplodus vulgaris) cultured in a recirculating aquaculture system. Aquacult. Int., vol. 22, pp. 965-973, 2014a. |
[31] | A. Rahim, G. Abbas, S. Ferrando, L. Gallus, A. Ghaffar, A. Mateen, M. Hafeez-ur-Rehman, and B. Waryani, “Effects of varying dietary protein level on growth, nutrient utilization and body composition of juvenile Blackfin sea bream, Acanthopagrus berda (Forsskal, 1775). Pak. J. Zool., vol. 48(4), pp. 1089-1097, 2016. |
[32] | M. T. Atienza, S. Chatzifotis, and P. Divanach, “Macronutrient selection by sharp snout sea bream (Diplodus puntazzo). Aquaculture, vol. 232, pp. 481-491, 2004. |
[33] | A. G. J. Tacon, and C. B. Cowey, “Protein and amino acid requirements,” in Fish Energetics, P. Tytler, P. Calow and C. Helm, Eds. London & Sydney: New Perspectives, 1985, pp. 155-183. |
[34] | J. J. Sabaut, and P. Luquet, “Nutritional requirements of the gilthead bream Chrysophrys aurata. Quantitative protein requirements,” Mar. Biol., vol. 18, pp. 50-54, 1973. |
[35] | F. Hidalgo, and E. Alliot, “Influence of water temperature on protein requirement and protein utilization in juvenile sea bass, Dicentrarchus labrax,” Aquaculture, vol. 72, pp. 115-129, 1988. |
[36] | K. Kim, B. T. Kayes, and H. C. Amundson, “Purified diet development and re-evaluation of the dietary protein requirement of fingerling rainbow trout (Oncorhynchus mykiss),” Aquaculture, vol. 96, pp. 57-67, 1991. |
[37] | F. J. Espinos, A. Tomás, L. M. Pérez, J. Balasch, and M. Jover, “Growth of dentex fingerlings (Dentex dentex) fed diets containing different levels of protein and lipid,” Aquaculture, vol. 218, pp. 479-490, 2003. |
[38] | M. Yigit, S. Koshio, S. Teshima, and M. Ishikawa, “Dietary protein and energy requirements of juvenile Japanese flounder, Paralichthys olivaceus,” J. Appl Sci., vol. 4(3), pp. 486-492, 2004. |
[39] | D. Schuchardt, J. M. Vergara, H. Fernández-Palacios, C. T. Kalinowski, C. M. Hernández-Cruz, M. S. Izquierdo, L. Robaina, “Effects of different dietary protein and lipid levels on growth, feed utilization and body composition of the red porgy (Pagrus pagrus) fingerlings,” Aquacult. Nutr., vol. 14, pp. 1-9, 2008. |
[40] | NRC, Nutrient requirements of fsh and shrimp. National Research Council. Washington, USA: National Academies, 2011. |
[41] | S. J. Kaushik, and F. Medale, “Energy requirements, utilization and dietary supply to salmonids,” Aquaculture, vol. 124, pp. 81-97, 1994. |
[42] | M. Vivas, V. C. Rubio, F. J. Sánchez-Vázquez, C. Mena, B. G. García, J. A. Madrid, “Dietary self-selection in sharpsnout seabream (Diplodus puntazzo) fed paired macronutrient feeds and challenged with protein dilution,” Aquaculture, vol. 251, pp. 430-437, 2006. |
[43] | K. S. Ekmann, J. Dalsgaard, J. Holm, P. J. Campbell, P. V. Skov, “Effects of dietary energy density and digestible protein:energy ratio on de novo lipid synthesis from dietary protein in gilthead sea bream (Sparus aurata) quantified with stable isotopes,” Brit. J. Nutr., vol. 110, pp. 1771-1781, 2013. |
[44] | M. Bulut, M. Yiğit, S. Ergün, O. S. Kesbiç, Ü. Acar, M. Karga, D. Güroy, “Incorporation of corn gluten meal as a replacement for fish meal in the diets of two banded seabream (Diplodus vulgaris) juveniles,” Int. J. AgriSci., vol. 4, pp. 60-65, 2014b. |
[45] | O. S. Kesbic, Ü. Acar, M. Yigit, M. Bulut, N. Gültepe, and S. Yilmaz, “Unrefined peanut oil as a lipid source in diets for juveniles of twobanded seabream Diplodus vulgaris,” N. Am. J. Aquacult., vol. 78(1), pp. 64-71, 2016. |
[46] | F. Mongile, A. Bonaldo, R. Fontanillas, L. Mariani, A. Badiani, E. Bonvini, and L. Parma, “Effects of dietary lipid level on growth and feed utilisation of gilthead seabream (Sparus aurata L.) reared at Mediterranean summer temperature,” Ital. J. Anim. Sci., vol. 13, pp. 30-34, 2014. |
[47] | A. A. Bischoff, N. Kube, B. Wecker, and U. Waller, “MARE-Marine artificial recirculated ecosystem: Steps towards closed systems for the production of marine organisms,” in Lessons from the Past to Optimise the Future, vol. 35, B. Howell, and R. Flos, Eds. Oostende Belgium: ESA special publication, 2005, pp. 135-136. |
[48] | M. De La Higuera, M. García Gallego, A. Sanz, M. C. Hidalgo, and M. D. Suárez, “Utilization of dietary protein by the eel (Anguilla anguilla): optimum dietary protein levels,” Aquaculture, vol. 79, pp. 53-61, 1989. |
[49] | M. Maldonado-García, J. Rodríguez-Romero, M. Reyes-Becerril, C. A. Álvarez-González, R. Civera-Cerecedo, and M. Spanopoulos, “Effect of varying dietary protein levels on growth, feeding efficiency, and proximate composition of yellow snapper Lutjanus argentiventris (Peters, 1869),” Lat. Am. J. Aquat. Res., vol. 40(4), pp. 1017-1025, 2012. |
[50] | H. Peres, and A. Oliva-Teles, “Protein and energy metabolism of European seabass (Dicentrarchus labrax) juveniles and estimation of maintenance requirements,” Fish Physiol. Biochem., vol. 31, pp. 23-31, 2005. |
[51] | J. A. Green, R. W. Hardy, and E. L. Brannon, “The optimum dietary essential:nonessential amino acid ratio for rainbow trout (Oncorhynchus mykiss), which maximizes nitrogen retention and minimizes nitrogen excretion,” Fish Physiol. Biochem., vol. 27, pp. 109-115, 2002. |
[52] | C. Burel, T. Boujard, S. J. Kaushik, G. Boeuf, S. Van Der Geyten, K. A. Mol, E. R. Kühn, A. Quinsac, M. Krouti, and D. Ribaillier, “Potential of plant-protein sources as fish meal substitutes in diets for turbot (Psetta maxima): growth, nutrient utilization and thyroid status,” Aquaculture, vol. 188, pp. 363-382, 2000. |
[53] | V. Fournier, C. Huelvan, and E. Desbruyeres, “Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psetta maxima),” Aquaculture, vol. 236, pp. 451-465, 2004. |
[54] | A. Turker, M. Yigit, S. Ergun, B. Karaali, and A. Erteken, “Potential of poultry by-product meal as a substitute for fishmeal in diets for Black Sea turbot Scophthalmus maeoticus: Growth and Nutrient Utilization in Winter. Isr. J. Aquacult.-Bamid., vol. 57(1), pp. 49-61, 2005. |
[55] | M. Yigit, M. Erdem, S. Koshio, S. Ergün, A. Türker, and B. Karaali, “Substituting fish meal with poultry by-product meal in diets for Black Sea turbot Psetta maeotica, Aquacult. Nutr., vol. 12, pp. 340-347, 2006. |
[56] | F. B. Harmantepe, M. Yigit, G. Dogan, Z. Karsli, U. Yigit, and O. Uyan, “Effects of dietary lipid levels on growth performance and feed utilization in juvenile Black Sea turbot (Psetta maxima) with reference to nitrogen excretion,” Mar. Sci. Technol. Bull., vol. 3(2), pp. 21-26, 2014. |
[57] | F. Tulli, C. Vachot, E. Tibaldi, V. Fournier, and S. J. Kaushik, “Contribution of dietary arginine to nitrogen utilisation and excretion in juvenile sea bass (Dicentrarchus labrax) fed diets differing in protein source,” Comp. Biochem. Phys. A, vol. 147(1), 179-188. 2007. |
[58] | F. Tulli, M. Messina, M. Calligaris, and E. Tibaldi, “Response of European sea bass (Dicentrarchus labrax) to graded levels of methionine (total sulfur amino acids) in soya protein-based semi-purified diets,” Brit. J. Nutr., vol. 104, pp. 664-673, 2010. |
[59] | R. Wilson, “Amino acids and proteins,” in Fish Nutrition, J. E. Halver, Ed. San Diego: Academic Press, 1989, pp. 112-153. |
[60] | R. P. Wilson, “Amino acids and proteins,” in: Fish Nutrition, 3rd ed, J. E. Halver, and R. W. Hardy, Eds. New York: Academic Press, 2002, pp. 143-179. |
[61] | D. A. J. Stone, “Dietary carbohydrate utilization by fish,” Rev. Fish. Sci., vol. 11, pp. 337-369, 2003. |
[62] | J. F. Bibiano, L. M. Lundstedt, I. Meton, I. V. Baanante, and G. Moraes, “Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae),” Comp. Biochem. Phys. A., vol. 145, pp. 181-187, 2006. |
[63] | J. Gaye-Siessegger, U. Focken, and K. Becker, “Effect of dietary protein/carbohydrate ratio on activities of hepatic enzymes involved in the amino acid metabolism of Nile tilapia, Oreochromis niloticus (L.),” Fish Physiol. Biochem., vol. 32, pp. 275-282, 2006. |
[64] | M. Yigit, Ö. Yardim, and S. Koshio, “The protein sparing effects of high lipid levels in diets for rainbow trout (Oncorhynchus mykiss, W. 1792) with special reference to reduction of total nitrogen excretion. Isr. J. Aquacult.-Bamid., vol. 54(2), pp. 79-88, 2002. |
[65] | G. McClelland, G. Zwingelstein, J. M. Weber, and G. Brichon, “Lipid composition of tissue and plasma in two Mediterranean fshes, the gilthead seabream (Chrysophyrys auratus) and the European seabass (Dicentrarchus labrax),” Can. J. Fish. Aquat. Sci., vol. 52, pp. 161-170, 1995. |
[66] | H. Péres, P. Gonçalves, and A. Oliva-Teles, “Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax),” Aquaculture, vol. 179, pp. 415-423, 1999. |
[67] | A. Pérez-Jiménez, M. C. Hidalgo, A. E. Morales, M. Arizcun, E. Abellan, and G. Cardenete, “Use of different combinations of macronutrients in diets for dentex (Dentex dentex) Effects on intermediary metabolism,” Comp. Biochem. Phys. A, vol. 152, pp. 314-321. |
[68] | F. Wang, H. Han, Y. Wang, and X. Ma, “Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels,” Aquacult. Nutr., vol. 19, pp. 360-367, 2013. |
[69] | W. Li, X. Wen, J. Zhao, S. Li, and D. Zhu, “Effects of dietary protein levels on growth, feed utilization, body composition and ammonia–nitrogen excretion in juvenile Nibea diacanthus,” Fisheries Sci., vol. 82, pp. 137-146, 2016. |
APA Style
Merve Sahinyilmaz, Murat Yigit. (2017). Evaluation of Protein Levels in Diets for Salema Porgy (Sarpa salpa) Juveniles, a New Candidate Species for the Mediterranean Aquaculture. Journal of Food and Nutrition Sciences, 5(3), 107-115. https://doi.org/10.11648/j.jfns.20170503.17
ACS Style
Merve Sahinyilmaz; Murat Yigit. Evaluation of Protein Levels in Diets for Salema Porgy (Sarpa salpa) Juveniles, a New Candidate Species for the Mediterranean Aquaculture. J. Food Nutr. Sci. 2017, 5(3), 107-115. doi: 10.11648/j.jfns.20170503.17
AMA Style
Merve Sahinyilmaz, Murat Yigit. Evaluation of Protein Levels in Diets for Salema Porgy (Sarpa salpa) Juveniles, a New Candidate Species for the Mediterranean Aquaculture. J Food Nutr Sci. 2017;5(3):107-115. doi: 10.11648/j.jfns.20170503.17
@article{10.11648/j.jfns.20170503.17, author = {Merve Sahinyilmaz and Murat Yigit}, title = {Evaluation of Protein Levels in Diets for Salema Porgy (Sarpa salpa) Juveniles, a New Candidate Species for the Mediterranean Aquaculture}, journal = {Journal of Food and Nutrition Sciences}, volume = {5}, number = {3}, pages = {107-115}, doi = {10.11648/j.jfns.20170503.17}, url = {https://doi.org/10.11648/j.jfns.20170503.17}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jfns.20170503.17}, abstract = {In the present study, the effects of different dietary protein levels on salema porgy, Sarpa salpa (Linnaeus, 1758) juveniles were investigated. Six iso-caloric (20 kJ/g diet) diets with increasing protein levels (30, 37, 40, 47, 50, and 57%) were formulated. Each test diet was randomly fed to triplicate groups of 13 juvenile fish (initial mean weight 19.28±0.13 g) to satiety over 90 days. Growth performance and feed utilization were best with low dietary protein levels of 30 and 37%, but decreased with diets containing protein levels over 40%. Ammonia nitrogen excretion showed an increasing trend as dietary protein levels gradually increased, whereas retention rates of ammonia nitrogen per intake were highest in the low protein groups of 30 or 37%. The analyses of specific growth rate by broken-line regression indicated that the optimal dietary level of protein for salema porgy juvenile were 33.6% under the conditions applied in this study. As a result, S. salpa demonstrated better growth with low protein diets, showing that this marine fish could be a promising candidate for a sustainable and environment friendly aquaculture industry.}, year = {2017} }
TY - JOUR T1 - Evaluation of Protein Levels in Diets for Salema Porgy (Sarpa salpa) Juveniles, a New Candidate Species for the Mediterranean Aquaculture AU - Merve Sahinyilmaz AU - Murat Yigit Y1 - 2017/05/09 PY - 2017 N1 - https://doi.org/10.11648/j.jfns.20170503.17 DO - 10.11648/j.jfns.20170503.17 T2 - Journal of Food and Nutrition Sciences JF - Journal of Food and Nutrition Sciences JO - Journal of Food and Nutrition Sciences SP - 107 EP - 115 PB - Science Publishing Group SN - 2330-7293 UR - https://doi.org/10.11648/j.jfns.20170503.17 AB - In the present study, the effects of different dietary protein levels on salema porgy, Sarpa salpa (Linnaeus, 1758) juveniles were investigated. Six iso-caloric (20 kJ/g diet) diets with increasing protein levels (30, 37, 40, 47, 50, and 57%) were formulated. Each test diet was randomly fed to triplicate groups of 13 juvenile fish (initial mean weight 19.28±0.13 g) to satiety over 90 days. Growth performance and feed utilization were best with low dietary protein levels of 30 and 37%, but decreased with diets containing protein levels over 40%. Ammonia nitrogen excretion showed an increasing trend as dietary protein levels gradually increased, whereas retention rates of ammonia nitrogen per intake were highest in the low protein groups of 30 or 37%. The analyses of specific growth rate by broken-line regression indicated that the optimal dietary level of protein for salema porgy juvenile were 33.6% under the conditions applied in this study. As a result, S. salpa demonstrated better growth with low protein diets, showing that this marine fish could be a promising candidate for a sustainable and environment friendly aquaculture industry. VL - 5 IS - 3 ER -