| Peer-Reviewed

Integrating In Vivo Model, Molecular Docking and Network Pharmacology to Determine the Mechanism of Theobroma cacao Seed in Treatment of Diarrheal

Received: 24 January 2023     Accepted: 10 February 2023     Published: 3 March 2023
Views:       Downloads:
Abstract

Theobroma cacao is an economically important tropical-fruit tree where chocolate is obtained, and it is used as traditional medicine worldwide against several diseases. In the present study, in vivo model and computational biology approaches were used to elucidate the potential mechanisms of T. cacao in the treatment of diarrhea. The antidiarrheal and intestinal motility activity was conducted using an animal model induced diarrhea with MgSO4. In addition, an OECD acute oral toxicity test was carried out. Prediction analysis of the bioactive effects of T. cacao against diarrhea symptoms were carried out applying functional enrichment analysis, protein-protein interaction, ADME and drug-likeness analysis, and molecular docking. The analysis of the compound-target- pathway-antidiarrheal mechanism relationships was performed in Cytoscape. T. cacao (200 mg/kg) effectively inhibited diarrhea in mice, significantly lowering the diarrheal stools and intestinal motility, without toxicity signs. Gene set enrichment, molecular docking, and network pharmacology revealed 13 T. cacao compounds targeting 12 proteins that regulate 11 signaling pathways related to diarrhea. According to our research results, the T. cacao antidiarrheal effect could be due to the therapeutic action of quercetin, luteolin, and deoxyclovamide compounds on the ABCB1, ABCG2, CYP3A4, EGFR, ERBB2, IL6, SI, and SLC10A2 genes, related to Carbohydrate digestion and absorption, Bladder cancer, Bile secretion and Graft-versus-host disease as the most significant signaling pathways.

Published in Journal of Diseases and Medicinal Plants (Volume 9, Issue 1)
DOI 10.11648/j.jdmp.20230901.12
Page(s) 7-20
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Antidiarrheal Effect, Mechanism, Signaling Pathways, Theobroma cacao

References
[1] World Health Organization. Integrated management of childhood illness (IMCI) WHO Press; 18 November 2014.
[2] World Health Statistics 2022: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2022. License: CC BY-NC-SA 3.0 IGO.
[3] Mashoto, K. O., Malebo, H. M., Msisiri, E., & Peter, E. (2014). Prevalence, one week incidence and knowledge on causes of diarrhea: household survey of under-fives and adults in Mkuranga district, Tanzania. BMC public health, 14, 985. https://doi.org/10.1186/1471-2458-14-985.
[4] Schiller L. R. (2017). Antidiarrheal Drug Therapy. Current gastroenterology reports, 19 (5), 18. https://doi.org/10.1007/s11894-017-0557-x.
[5] Adams D. H. (2007). Sleisenger and Fordtran's Gastrointestinal and Liver Disease. Gut, 56 (8), 1175. https://doi.org/10.1136/gut.2007.121533.
[6] Schiller L. R. (1995). Review article: anti-diarrhoeal pharmacology and therapeutics. Alimentary pharmacology & therapeutics, 9 (2), 87–106.
[7] Khansari, M., Sohrabi, M., & Zamani, F. (2013). The Useage of Opioids and their Adverse Effects in Gastrointestinal Practice: A Review. Middle East journal of digestive diseases, 5 (1), 5–16.
[8] Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules (Basel, Switzerland), 27 (2), 349. https://doi.org/10.3390/molecules27020349.
[9] Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce, & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature reviews. Drug discovery, 20 (3), 200–216. https://doi.org/10.1038/s41573-020-00114-z.
[10] Wang, C., Huanbieke, N., Cai, X., Gao, S., Du, T., Zhou, Z., Wusiman, Z., Matturzi, M., Aibai, S., & Li, Z. J. (2022). Integrating Network Pharmacology and In Vivo Model to Investigate the Mechanism of Biheimaer in the Treatment of Functional Dyspepsia. Evidence-based complementary and alternative medicine: eCAM, 2022, 8773527. https://doi.org/10.1155/2022/8773527.
[11] Li, S., Fan, T. P., Jia, W., Lu, A., & Zhang, W. (2014). Network pharmacology in traditional chinese medicine. Evidence-based complementary and alternative medicine: eCAM, 2014, 138460. https://doi.org/10.1155/2014/138460.
[12] Luo, T. T., Lu, Y., Yan, S. K., Xiao, X., Rong, X. L., & Guo, J. (2020). Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chinese journal of integrative medicine, 26 (1), 72–80. https://doi.org/10.1007/s11655-019-3064-0.
[13] Rawat, P., Singh, P. K., & Kumar, V. (2017). Evidence based traditional anti-diarrheal medicinal plants and their phytocompounds. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 96, 1453–1464. https://doi.org/10.1016/j.biopha.2017.11.147.
[14] Ishaq, S. & Jafri, L. (2017) Biomedical Importance of Cocoa (Theobroma cacao): Significance and Potential for the Maintenance of Human Health. Matrix Science Pharma, 1, 1-5. https://doi.org/10.26480/msp.01.2017.01.05.
[15] Aguilera J. E. & Moreno M. A. (2016) Evaluación preliminar del efecto antidiarreico de la cocción de semillas de Theobroma cacao (Malvaceae) en ratones Mus musculus (Rodentia, Muridae) cepa NIH. Revista Comunicaciones Científicas y Tecnológicas, 2 (1). 92-96. ISSN 2413-1792.
[16] Abulude F, Ogunkoya M, Adenibuyan G, Arifalo K, Akinusotu A, Samuel A, Adamu A, Kenni A & Bello L. (2022) "Phytochemical Assessment of The Extracts of Stem (Bark) and Leaves of Theobroma Cocoa Materials: Experimental Procedure and Its Comparison to Literature". ASEAN Journal for Science and Engineering in Materials, 2022. Aug (1): 85-92.
[17] Van Tang Nguyen, V. Tang Nguyen, Thanh Giang Tran, T. Giang Tran, & Ngoc Le Tran, N. Le Tran. (2022). Phytochemical compound yield and antioxidant activity of cocoa pod husk (Theobroma cacao L.) as influenced by different dehydration conditions. Drying technology, 40, 2021-2033. doi: 10.1080/07373937.2021.1913745.
[18] Cerri, M., Reale, L., & Zadra, C. (2019). Metabolite Storage in Theobroma cacao L. Seed: Cyto-Histological and Phytochemical Analyses. Frontiers in plant science, 10, 1599. https://doi.org/10.3389/fpls.2019.01599.
[19] Jaganath I. B. & Crozier A. (2010). Dietary flavonoids and phenolic Compounds. In: Plant Phenolics and Human Health. Biochemistry, Nutrition, and Pharmacology, 1–49 pp. Fraga, C. G., Eds., John Wiley & Sons, Inc, New Jersey.
[20] Wahid, M., Saqib, F., Akhtar, S., Ali, A., Wilairatana, P., & Mubarak, M. S. (2022). Possible Mechanisms Underlying the Antispasmodic, Bronchodilator, and Antidiarrheal Activities of Polarity-Based Extracts of Cucumis sativus L. Seeds in In Silico, In Vitro, and In Vivo Studies. Pharmaceuticals (Basel, Switzerland), 15 (5), 641. https://doi.org/10.3390/ph15050641.
[21] Guide for the Care and Use of Laboratory Animals. (2011). Eighth Edition. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/12910.
[22] Uddin, S. J., Shilpi, J. A., Alam, S. M., Alamgir, M., Rahman, M. T., & Sarker, S. D. (2005). Antidiarrhoeal activity of the methanol extract of the barks of Xylocarpus moluccensis in castor oil- and magnesium sulphate-induced diarrhoea models in mice. Journal of ethnopharmacology, 101 (1-3), 139–143. https://doi.org/10.1016/j.jep.2005.04.006.
[23] Besra, S. E., Gomes, A., Chaudhury, L., Vedasiromoni, J. R., & Ganguly, D. K. (2002). Antidiarrhoeal activity of seed extract of Albizzia lebbeck Benth. Phytotherapy research: PTR, 16 (6), 529–533. https://doi.org/10.1002/ptr.961.
[24] OECD. (2002). Test No. 423: Acute Oral toxicity - Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals. Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264071001-en.
[25] Oracz, J., Zyzelewicz, D., & Nebesny, E. (2015). The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review. Critical reviews in food science and nutrition, 55 (9), 1176–1192. https://doi.org/10.1080/10408398.2012.686934.
[26] Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic acids research, 47 (W1), W357–W364. https://doi.org/10.1093/nar/gkz382.
[27] Piñero, J., Saüch, J., Sanz, F., & Furlong, L. I. (2021). The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Computational and structural biotechnology journal, 19, 2960–2967. https://doi.org/10.1016/j.csbj.2021.05.015.
[28] Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., & Hamosh, A. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic acids research, 43 (Database issue), D789–D798. https://doi.org/10.1093/nar/gku1205.
[29] Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13 (11), 2498–2504. https://doi.org/10.1101/gr.1239303.
[30] Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England), 36 (8), 2628–2629. https://doi.org/10.1093/bioinformatics/btz931.
[31] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics, 25 (1), 25–29. https://doi.org/10.1038/75556.
[32] Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., & Tanabe, M. (2021). KEGG: integrating viruses and cellular organisms. Nucleic acids research, 49 (D1), D545–D551. https://doi.org/10.1093/nar/gkaa970.
[33] Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717. https://doi.org/10.1038/srep42717.
[34] Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry, 25 (13), 1605–1612. https://doi.org/10.1002/jcc.20084.
[35] Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. https://doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p.
[36] O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33.
[37] Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England), 25 (8), 1091–1093. https://doi.org/10.1093/bioinformatics/btp101
[38] Bindea, G., Galon, J., & Mlecnik, B. (2013). CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics (Oxford, England), 29 (5), 661–663. https://doi.org/10.1093/bioinformatics/btt019.
[39] Counet, C., Ouwerx, C., Rosoux, D., & Collin, S. (2004). Relationship between procyanidin and flavor contents of cocoa liquors from different origins. Journal of agricultural and food chemistry, 52 (20), 6243–6249. https://doi.org/10.1021/jf040105b.
[40] Elwers, S. (2008). Zusammensetzung und histologische Verteilung der phenolischen Substanzen in Samen von Massen- und Edelkakao-Variet ̈aten (Theobroma cacao L.) pp 259. Dissertation, Univ., MIN-Fak., Dept. Biol., Diss.–Hamburg.
[41] Lafay, S. & Gil-Izquierdo, A. (2008). Bioavailability of phenolic acids. Phytochemistry Reviews, 7 301–311. https://doi.org/10.1007/s11101-007-9077-x.
[42] Sanbongi, C., Osakabe, N., Natsume, M., Takizawa, T., Gomi, S., & Osawa, T. (1998). Antioxidative Polyphenols Isolated from Theobroma cacao. Journal of agricultural and food chemistry, 46 (2), 454–457. https://doi.org/10.1021/jf970575o.
[43] Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic acids research, 37 (Database issue), D412–D416. https://doi.org/10.1093/nar/gkn760.
[44] Martin Y. C. (2005). A bioavailability score. Journal of medicinal chemistry, 48 (9), 3164–3170. https://doi.org/10.1021/jm0492002.
[45] Gaillard T. (2018). Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. Journal of chemical information and modeling, 58 (8), 1697–1706. https://doi.org/10.1021/acs.jcim.8b00312.
[46] Liu, C., Zheng, Y., Xu, W., Wang, H., & Lin, N. (2014). Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model. BioMed research international, 2014, 619465. https://doi.org/10.1155/2014/619465.
[47] Ikarashi, N., Mochiduki, T., Takasaki, A., Ushiki, T., Baba, K., Ishii, M., Kudo, T., Ito, K., Toda, T., Ochiai, W., & Sugiyama, K. (2011). A mechanism by which the osmotic laxative magnesium sulphate increases the intestinal aquaporin 3 expression in HT-29 cells. Life sciences, 88 (3-4), 194–200. https://doi.org/10.1016/j.lfs.2010.11.013.
[48] Izzo, A. A., Gaginella, T. S., Mascolo, N., & Capasso, F. (1994). Nitric oxide as a mediator of the laxative action of magnesium sulphate. British journal of pharmacology, 113 (1), 228–232. https://doi.org/10.1111/j.1476-5381.1994.tb16198.x.
[49] Weaver, M. J., McHenry, S. A., Sayuk, G. S., Gyawali, C. P., & Davidson, N. O. (2020). Bile Acid Diarrhea and NAFLD: Shared Pathways for Distinct Phenotypes. Hepatology communications, 4 (4), 493–503. https://doi.org/10.1002/hep4.1485.
[50] Yde, J., Keely, S., Wu, Q., Borg, J. F., Lajczak, N., O'Dwyer, A., Dalsgaard, P., Fenton, R. A., & Moeller, H. B. (2016). Characterization of AQPs in Mouse, Rat, and Human Colon and Their Selective Regulation by Bile Acids. Frontiers in nutrition, 3, 46. https://doi.org/10.3389/fnut.2016.00046.
[51] Galvez, J., Zarzuelo, A., Crespo, M. E., Lorente, M. D., Ocete, M. A., & Jiménez, J. (1993). Antidiarrhoeic activity of Euphorbia hirta extract and isolation of an active flavonoid constituent. Planta medica, 59 (4), 333–336. https://doi.org/10.1055/s-2006-959694.
[52] Izzo, A. A., Gaginella, T. S., & Capasso, F. (1996). The osmotic and intrinsic mechanisms of the pharmacological laxative action of oral high doses of magnesium sulphate. Importance of the release of digestive polypeptides and nitric oxide. Magnesium research, 9 (2), 133–138.
[53] Qin, G., Zhang, Y., & Yao, S. K. (2020). Serotonin transporter and cholecystokinin in diarrhea-predominant irritable bowel syndrome: Associations with abdominal pain, visceral hypersensitivity and psychological performance. World journal of clinical cases, 8 (9), 1632–1641. https://doi.org/10.12998/wjcc.v8.i9.1632.
[54] Hammer, H. F., & Hammer, J. (2012). Diarrhea caused by carbohydrate malabsorption. Gastroenterology clinics of North America, 41 (3), 611–627. https://doi.org/10.1016/j.gtc.2012.06.003.
[55] Lehmann, A., & Hornby, P. J. (2016). Intestinal SGLT1 in metabolic health and disease. American journal of physiology. Gastrointestinal and liver physiology, 310 (11), G887–G898. https://doi.org/10.1152/ajpgi.00068.2016.
[56] Guo Y. F., Long C. X., Liu Y. J., He L., Shu L. & Tan Z. J. (2017). Sucrase-isomaltase deficiency and diarrhea. Shijie Huaren Xiaohua Zazhi, 25 (15): 1345-1351. doi: 10.11569/wcjd.v25.i15.1345E
[57] Chiruvella, V., Cheema, A., Arshad, H. M. S., Chan, J. T., & Yap, J. E. L. (2021). Sucrase-Isomaltase Deficiency Causing Persistent Bloating and Diarrhea in an Adult Female. Cureus, 13 (4), e14349. https://doi.org/10.7759/cureus.14349.
[58] Moriya, R., Shirakura, T., Ito, J., Mashiko, S., & Seo, T. (2009). Activation of sodium-glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. American journal of physiology. Endocrinology and metabolism, 297 (6), E1358–E1365. https://doi.org/10.1152/ajpendo.00412.2009.
[59] Hunt, J. E., Holst, J. J., Jeppesen, P. B., & Kissow, H. (2021). GLP-1 and Intestinal Diseases. Biomedicines, 9 (4), 383. https://doi.org/10.3390/biomedicines9040383.
[60] Schaeffeler, E., Eichelbaum, M., Brinkmann, U., Penger, A., Asante-Poku, S., Zanger, U. M., & Schwab, M. (2001). Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet (London, England), 358 (9279), 383–384. https://doi.org/10.1016/S0140-6736(01)05579-9.
[61] Sakaeda T. (2005). MDR1 genotype-related pharmacokinetics: fact or fiction?. Drug metabolism and pharmacokinetics, 20 (6), 391–414. https://doi.org/10.2133/dmpk.20.391.
[62] Markey, K. A., MacDonald, K. P., & Hill, G. R. (2008). Impact of cytokine gene polymorphisms on graft-vs-host disease. Tissue antigens, 72 (6), 507–516. https://doi.org/10.1111/j.1399-0039.2008.01139.x.
[63] Xu, C. F., Zhu, L. X., Xu, X. M., Chen, W. C., & Wu, D. P. (2008). Endoscopic diagnosis of gastrointestinal graft-versus-host disease. World journal of gastroenterology, 14 (14), 2262–2267. https://doi.org/10.3748/wjg.14.2262.
[64] Hur, S. J., Kang, S. H., Jung, H. S., Kim, S. C., Jeon, H. S., Kim, I. H., & Lee, J. D. (2012). Review of natural products actions on cytokines in inflammatory bowel disease. Nutrition research (New York, N. Y.), 32 (11), 801–816. https://doi.org/10.1016/j.nutres.2012.09.013.
[65] Uberti, F., Morsanuto, V., Ruga, S., Galla, R., Farghali, M., Notte, F., Bozzo, C., Magnani, C., Nardone, A., & Molinari, C. (2020). Study of Magnesium Formulations on Intestinal Cells to Influence Myometrium Cell Relaxation. Nutrients, 12 (2), 573. https://doi.org/10.3390/nu12020573.
[66] Buxton, I. L., Kaiser, R. A., Malmquist, N. A., & Tichenor, S. (2001). NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP. British journal of pharmacology, 134 (1), 206–214. https://doi.org/10.1038/sj.bjp.0704226.
[67] Li, Z., Li, J., Zhang, F., Zhu, N., Sha, Z., Li, D., Tu, Y., & Hou, J. (2020). Antidiarrheal Effect of Sechang-Zhixie-San on Acute Diarrhea Mice and Network Pharmacology Deciphering Its Characteristics and Potential Mechanisms. Evidence-based complementary and alternative medicine: eCAM, 2020, 8880298. https://doi.org/10.1155/2020/8880298.
[68] Nunnery, S. E., & Mayer, I. A. (2019). Management of toxicity to isoform α-specific PI3K inhibitors. Annals of oncology: official journal of the European Society for Medical Oncology, 30 (Suppl_10), x21–x26. https://doi.org/10.1093/annonc/mdz440.
[69] Hu, X., Li, J., Fu, M., Zhao, X., & Wang, W. (2021). The JAK/STAT signaling pathway: from bench to clinic. Signal transduction and targeted therapy, 6 (1), 402. https://doi.org/10.1038/s41392-021-00791-1.
[70] Luo, R., Huang, X., Yan, Z., Gao, X., Wang, P., Yang, Q., Wang, W., Xie, K., & Gun, S. (2020). Identification and Characterization of MAPK Signaling Pathway Genes and Associated lncRNAs in the Ileum of Piglets Infected by Clostridium perfringens Type C. BioMed research international, 2020, 8496872. https://doi.org/10.1155/2020/8496872.
[71] Geng, Z., & Geng, Q. (2021). Risk of Urinary Bladder Cancer in Patients With Inflammatory Bowel Diseases: A Meta-Analysis. Frontiers in surgery, 8, 636791. https://doi.org/10.3389/fsurg.2021.636791.
[72] Wahid, M., Saqib, F., Qamar, M., & Ziora, Z. M. (2022). Antispasmodic activity of the ethanol extract of Citrullus lanatus seeds: Justifying ethnomedicinal use in Pakistan to treat asthma and diarrhea. Journal of ethnopharmacology, 295, 115314. https://doi.org/10.1016/j.jep.2022.115314.
[73] Li, X., Zhang, C., Tan, Z., & Yuan, J. (2021). Network Pharmacology-Based Analysis of Gegenqinlian Decoction Regulating Intestinal Microbial Activity for the Treatment of Diarrhea. Evidence-based complementary and alternative medicine: eCAM, 2021, 5520015. https://doi.org/10.1155/2021/5520015.
[74] Dong, C. L., Qin, Y., Ma, J. X., Cui, W. Q., Chen, X. R., Hou, L. Y., Chen, X. Y., God'spower, B. O., Eliphaz, N., Qin, J. J., Guo, W. X., Ding, W. Y., & Li, Y. H. (2021). The Active Ingredients Identification and Antidiarrheal Mechanism Analysis of Plantago asiatica L. Superfine Powder. Frontiers in pharmacology, 11, 612478. https://doi.org/10.3389/fphar.2020.612478.
Cite This Article
  • APA Style

    Maria Fernanda Marin, Jose Guillermo Mejía, Alberto Gabriel Flores, Ana Karla Cuchilla, Miguel Angel Moreno. (2023). Integrating In Vivo Model, Molecular Docking and Network Pharmacology to Determine the Mechanism of Theobroma cacao Seed in Treatment of Diarrheal. Journal of Diseases and Medicinal Plants, 9(1), 7-20. https://doi.org/10.11648/j.jdmp.20230901.12

    Copy | Download

    ACS Style

    Maria Fernanda Marin; Jose Guillermo Mejía; Alberto Gabriel Flores; Ana Karla Cuchilla; Miguel Angel Moreno. Integrating In Vivo Model, Molecular Docking and Network Pharmacology to Determine the Mechanism of Theobroma cacao Seed in Treatment of Diarrheal. J. Dis. Med. Plants 2023, 9(1), 7-20. doi: 10.11648/j.jdmp.20230901.12

    Copy | Download

    AMA Style

    Maria Fernanda Marin, Jose Guillermo Mejía, Alberto Gabriel Flores, Ana Karla Cuchilla, Miguel Angel Moreno. Integrating In Vivo Model, Molecular Docking and Network Pharmacology to Determine the Mechanism of Theobroma cacao Seed in Treatment of Diarrheal. J Dis Med Plants. 2023;9(1):7-20. doi: 10.11648/j.jdmp.20230901.12

    Copy | Download

  • @article{10.11648/j.jdmp.20230901.12,
      author = {Maria Fernanda Marin and Jose Guillermo Mejía and Alberto Gabriel Flores and Ana Karla Cuchilla and Miguel Angel Moreno},
      title = {Integrating In Vivo Model, Molecular Docking and Network Pharmacology to Determine the Mechanism of Theobroma cacao Seed in Treatment of Diarrheal},
      journal = {Journal of Diseases and Medicinal Plants},
      volume = {9},
      number = {1},
      pages = {7-20},
      doi = {10.11648/j.jdmp.20230901.12},
      url = {https://doi.org/10.11648/j.jdmp.20230901.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jdmp.20230901.12},
      abstract = {Theobroma cacao is an economically important tropical-fruit tree where chocolate is obtained, and it is used as traditional medicine worldwide against several diseases. In the present study, in vivo model and computational biology approaches were used to elucidate the potential mechanisms of T. cacao in the treatment of diarrhea. The antidiarrheal and intestinal motility activity was conducted using an animal model induced diarrhea with MgSO4. In addition, an OECD acute oral toxicity test was carried out. Prediction analysis of the bioactive effects of T. cacao against diarrhea symptoms were carried out applying functional enrichment analysis, protein-protein interaction, ADME and drug-likeness analysis, and molecular docking. The analysis of the compound-target- pathway-antidiarrheal mechanism relationships was performed in Cytoscape. T. cacao (200 mg/kg) effectively inhibited diarrhea in mice, significantly lowering the diarrheal stools and intestinal motility, without toxicity signs. Gene set enrichment, molecular docking, and network pharmacology revealed 13 T. cacao compounds targeting 12 proteins that regulate 11 signaling pathways related to diarrhea. According to our research results, the T. cacao antidiarrheal effect could be due to the therapeutic action of quercetin, luteolin, and deoxyclovamide compounds on the ABCB1, ABCG2, CYP3A4, EGFR, ERBB2, IL6, SI, and SLC10A2 genes, related to Carbohydrate digestion and absorption, Bladder cancer, Bile secretion and Graft-versus-host disease as the most significant signaling pathways.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Integrating In Vivo Model, Molecular Docking and Network Pharmacology to Determine the Mechanism of Theobroma cacao Seed in Treatment of Diarrheal
    AU  - Maria Fernanda Marin
    AU  - Jose Guillermo Mejía
    AU  - Alberto Gabriel Flores
    AU  - Ana Karla Cuchilla
    AU  - Miguel Angel Moreno
    Y1  - 2023/03/03
    PY  - 2023
    N1  - https://doi.org/10.11648/j.jdmp.20230901.12
    DO  - 10.11648/j.jdmp.20230901.12
    T2  - Journal of Diseases and Medicinal Plants
    JF  - Journal of Diseases and Medicinal Plants
    JO  - Journal of Diseases and Medicinal Plants
    SP  - 7
    EP  - 20
    PB  - Science Publishing Group
    SN  - 2469-8210
    UR  - https://doi.org/10.11648/j.jdmp.20230901.12
    AB  - Theobroma cacao is an economically important tropical-fruit tree where chocolate is obtained, and it is used as traditional medicine worldwide against several diseases. In the present study, in vivo model and computational biology approaches were used to elucidate the potential mechanisms of T. cacao in the treatment of diarrhea. The antidiarrheal and intestinal motility activity was conducted using an animal model induced diarrhea with MgSO4. In addition, an OECD acute oral toxicity test was carried out. Prediction analysis of the bioactive effects of T. cacao against diarrhea symptoms were carried out applying functional enrichment analysis, protein-protein interaction, ADME and drug-likeness analysis, and molecular docking. The analysis of the compound-target- pathway-antidiarrheal mechanism relationships was performed in Cytoscape. T. cacao (200 mg/kg) effectively inhibited diarrhea in mice, significantly lowering the diarrheal stools and intestinal motility, without toxicity signs. Gene set enrichment, molecular docking, and network pharmacology revealed 13 T. cacao compounds targeting 12 proteins that regulate 11 signaling pathways related to diarrhea. According to our research results, the T. cacao antidiarrheal effect could be due to the therapeutic action of quercetin, luteolin, and deoxyclovamide compounds on the ABCB1, ABCG2, CYP3A4, EGFR, ERBB2, IL6, SI, and SLC10A2 genes, related to Carbohydrate digestion and absorption, Bladder cancer, Bile secretion and Graft-versus-host disease as the most significant signaling pathways.
    VL  - 9
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Institute of Plant Biotechnology and Bioinformatic, Technical University of Braunschweig, Braunschweig, Alemania

  • Center for Research and Development in Health, University of El Salvador, San Salvador, El Salvador

  • Biology School, Faculty of Natural Sciences and Mathematics, University of El Salvador, San Salvador, El Salvador

  • National Center for Scientific Research of El Salvador, Ministry of Education Science and Technology, San Salvador, El Salvador

  • Biology School, Faculty of Natural Sciences and Mathematics, University of El Salvador, San Salvador, El Salvador

  • Sections