| Peer-Reviewed

In vitro Anthelmintic Activity of Tephrosia pedicellata on Two Nematodes (Haemonchus contortus, Caenorhaditis elegans) and Its In vivo Toxicity on Rats

Received: 28 August 2021     Accepted: 26 September 2021     Published: 12 October 2021
Views:       Downloads:
Abstract

In Cameroon, the practice of traditional medicine in the treatment of intestinal helminthiasis is a reality and habits in the lives of traditional healers and breeders for various reasons related to their local life situations. In the valorization of medicinal plants in the treatment of digestive parasitosis as an alternative to synthetic anthelmintics, a study was carried out in order to verify their anthelmintic activity and the level of their toxicity. The present study was carried out to determine the in vitro anthelminthic activity of Tephrosia pedicellata extracts. Aqueous and hydroethanolic leaves extracts at different concentrations were tested against Haemonchus contortus development stages, mutant and wild type of free-living nematode Caenorhabditis elegans. The two plant extracts were then chemically screened and their toxicological profile was established using albino rats. Hydroethanolic extract was the most potent by killing Haemonchus contortus adults (LC50: 0.038 mg/mL after 24 hours), infesting larvae (LC50: 0.22 mg/mL after 48 hours) and inhibiting egg hatching (IC50: 0.76 mg/mL after 48 hours). The two plant extracts showed same activity on Caenorhabditis elegans levamisole non-sensitive (LC50: 0.26 mg/mL after 48 hours) and sensitive strains (LC50: 0.25 mg/mL after 48 hours), showing different mode of action to that of levamisole. Several plant chemicals were identified from both extracts, with higher content of polyphenol compounds (562.91 mg GAE/g DW), flavonoids (135.96 mg RE/g DW), condensed tannins (228.50 mg CE/g DW) and saponins (206.83 mg SE/g DW) obtained with the hydroethanolic extract. No toxic effect was observed during acute toxicity study. Moreover, apart from the significant increase of platelets and Aspartate transaminase (p=0.001) and the glomerular inflammation in the lungs at the dose of 1000 mg/kg, no harmful variation of haematological and biochemical parameters of rats were observed. The pattern of anthelmintic activity of these extracts on Caenorhabditis elegans and the non-toxic effect of hydroethanolic extract provide a way for new anthelminthic drug.

Published in Journal of Diseases and Medicinal Plants (Volume 7, Issue 4)
DOI 10.11648/j.jdmp.20210704.11
Page(s) 87-97
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2021. Published by Science Publishing Group

Keywords

Haemonchus contortus, Caenorhabditis elegans, Tephrosia pedicellata, Plant Chemicals, Anthelminthic, Toxicity

References
[1] Sujon MA, Mostoja M, Jahan MS, Das AR, Rob S. (2008). Studies on Medicinal Plants against Gastrointestinal Nematodes of Goats. Bangladesh Journal of Veterinary Medicine. 6: 179-183.
[2] Chiejina SN, Behnke JM, Musongong GA, Nnadi PA, Ngongeh LA. (2010). Resistance and resilience of West African Dwarf goats of the Nigerian savanna zone exposed to experimental escalating primary and challenge infections with Haemonchus contortus. Vet Parasitol. 171: 81-90.
[3] Achi YL, Zinsstag, Yao K, Yeo N, Dorchies P. (2003). Epidémiologie des helminthoses des moutons et des chèvres dans la région des savanes du Nord de la Côte d'Ivoire. Revue de Médecine Vétérinaire. 154: 179-188.
[4] Poppi DP, Sykes AR, Dynes RA. (1990). The effect of endoparasitism on host nutrition - the implications for nutrient manipulation. Proceed New Zealand Soc Animal Prod. 50: 237-243.
[5] Koné MW, Kamanzi AK. (2006). Inventaire ethnomédical et évaluation de l'activité anthelminthique des plantes médicinales utilisées en côte d'ivoire contre les helminthiases intestinales. Pham Méd Trad Afr. 14: 55-72.
[6] Hammond JA, Fielding D, Bishop SC. (1997). Prospects for plant anthelmintics in tropical veterinary medicine. Anim Health Res Rev. 21: 213-228.
[7] Fajimi AK, Taiwo AA. (2005). Herbal remedies in animal parasitic diseases in Nigeria: a review. African Journal of Biotechnology. 4: 303-307.
[8] Coles GC, Jackson F, Pomroy WE, Prichard RK, Von Samson-Himmelstjerna G, Woodland A, Taylor MA, Vercruysse J. (2006). The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 136: 167-185.
[9] Waller PJ. (2006). From discovery to development: current industry perspectives for the development of novel methods of helminth control in livestock. Vet Parasitol. 139 (1-3): 1-14.
[10] Brenner S. (1974). The genetics of Caenorhabditis elegans. Genetics. 77: 71-94.
[11] Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J. (2012). Basic Caenorhabditis elegans Methods: Synchronization and Observation. Journal of Visualized Experiments. (64). doi: 10.3791/4019.
[12] Simpkin KG, Coles GC. (1981). The use of Caenorhabditis elegans for anthelmintic screening. J Chem Technol Biotech. 66-69.
[13] Dorris M, De Ley P, Blaxter ML. (1999). Molecular analysis of nematode diversity and the evolution of parasitism. J Parasitol. 15: 188-193.
[14] Castañeda-Ramírez GS., Torres-Acosta JFJ, Mendoza-de-Gives P, Tun-Garrido J, Rosado-Aguilar JA, Chan-Pérez JI, Jímenez-Coello M. (2019). Effects of different extracts of three Annona species on egg-hatching processes of Haemonchus contortus. J Helm. 1-8.
[15] Al-Ghamdi FA. (2013). Morphological Diversity of Some Tephrosia Species (Fabaceae) in Saudi Arabia. Am J Plant Sci. 4: 543-548.
[16] Mounkaila S, Soukaradji B, Morou B, Karim S, Issoufou HBA, Mahamane A, Ikhiri K, Saadou M. (2017). Inventaire et gestion des plantes médicinales dans quatre localités du Niger. Eur Sci J. 13: 498-521.
[17] Ndjonka D, Agyare C, Lüersen K, Djafsia B, Achuki D, Nukenine EN, Hensel A, Liebeu E. (2011). In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes. J Helminthol. 85: 304-312.
[18] Fankam AG, Kuete V, Voukeng IK, Kuiate JR, Pages JM. (2011). Antibacterial activities of select Cameroonian spices and their synergistic effets with antibiotics against multidrugs-resistant phenotypes. BMC Complement Altern Med. 11: 1-11.
[19] Lerato NM, Takaidza S, Pillay M. (2017). Preliminary phytochemical screening of crude extracts from the leaves, stems, and roots of Tulbaghia violacea. Int J Pharmacogn Phytochem Res. 9: 1300-1308.
[20] Bargah Rk. (2015). Preliminary test of phytochemical screening of crude ethanolic and aqueous extract of Moringa pterygosperma Gaertn. J Pharmacogn Phytochem. 4: 07-09.
[21] Dohou N, Yamni K, Tahrouch S. (2003). Screening phytochimique d'une endémique ibéro-marocaine, Thymelaea lythroides. Bull Soc Pharm Bord. 142: 61-78.
[22] Edeaga HO, Okwu DE, Mbaebie BO. (2005). Phytochemical constituants of some Nigerian medicinal plants. African Journal of Biotechnology. 4 (7): 685-688.
[23] Boizot N, Charpentier JP. (2006). Méthode rapide d’évaluation du contenu en composés phénoliques des organes d’un arbre forestier. Le Cah Tech l’Inra. 79-82.
[24] Bahorun T, Gressier B, Trotin F, Brunet C, Dine T, Luycky M. (1996). Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparation. Arzneimittelforschung. 46: 1086-1089.
[25] Ba K, Tine E, Destain J, Cisse N, Thonart P. (2010). Etude comparative des composés phénoliques, du pouvoir antioxydant des différentes variétés de sorgho senegalais et des enzymes amylotiques de leur malt. Biotechnol Agron Soc Environ. 14: 131-139.
[26] Hiai S, Oura H, Nakajima T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulphuric acid. Planta Med. 29: 1 16-122.
[27] Dedehou VFGN, Olounladé PA, Adenilé AD, Azando E VB. (2014). Effets in vitro des feuilles de Pterocarpus erinaceus et des cosses de fruits de Parkia biglobosa sur deux stades du cycle de développement de Haemonchus contortus nématode parasite gastro-intestinal des petits ruminants. J Anim Plant Sci. 22: 3368-3378.
[28] Beaumont SC, Kerbœuf D, Hubert J. (1987). Méthodes de mise en évidence de souches de strongles gastro-intestinaux résistantes aux anthelminthiques. Rec Med Vet. 163: 683-688.
[29] Soulsby EJL. (1982). Helminths, arthropods and protozoa of domesticated animals. 7th Edition Bailliere Tindall: London, Philadelphia and Toronto.
[30] Martinez XDJ, Juárez AO, Pérez JO, Zamilpa A, Gives PM, Arellano MEL, Hernández SR, Mancera AV, Diaz LMC, Salazar MC. (2018). In Vitro Anthelmintic Activity of Methanolic Extract from Caesalpinia coriaria J. Willd Fruits against Haemonchus contortus Eggs and Infective Larvae. BioMed Res Int. 1-6.
[31] Katiki LM, Chagas AS, Bizzo HR, Ferreira JS, Amarante FT. (2011). Anthelmintic activity of Cymbopogon martinii, Cymbopogons choenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Vet Parasitol. 183: 103-108.
[32] Skantar AM, Agama K, Meyer SLF, Carta LK, Vinyard BT. (2005). Effects of geldanamycin on hatching and juvenile motility in Caenorhabditis elegans and Heterodera glycines. J Chem Ecol. 31: 2481-2491.
[33] OECD. (2001). Harmonized Integrated Hazard Classification System for Human Health and Environmental Effects of Chemical Substances. OECD. 2: 20-24.
[34] OECD. (2008). Repeated Dose 28-Day Oral Toxicity Study in Rodents. OECD guidelines for the testing of chemicals. OCDE. 1: 1-14.
[35] John DB, Alan S. (1982). Theory and practice of histological techniques. Churchill Livingstone. 2: 647.
[36] Craven J, Bjorn H, Barnes EH, Henriksen SA, Nansen P. (1999). A comparison of in vitro tests and faecal egg count reduction test in detecting anthelmintic resistance in horse strongyles. Vet Parasitol. 85: 49-59.
[37] Barrau E, Fabre N, Fouraste I, Hoste H. (2005). Effect of bioactive compounds from sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. J Parasitol. 131: 531-538.
[38] Veerakumari L, Chitra N. (2016). Effect of Allium sativum on the Motility and Acetylcholinesterase of Haemonchus contortus. Int J Sci Res. 5: 883-887.
[39] Tiropa FCC, Sabbas A, Bienvenu AG, Sahidou S. (2016). In vitro anthelmintic activity of acetonic and methanolic extracts of Khaya senegalensis stem bark on Haemonchus contortus. World J Pharm Pharm Sci. 5: 138-147.
[40] Szewezuk VD, Mongelli ER, Pomilio AB. (2003). Antiparasitic activity of Melia azadirach growing in Argentina. Mol Med Chem. 1: 54-57.
[41] Koffi E, Sea T, Dodehe Y, Soro S. (2010). Effect of solvent type on extraction of polyphenols from twenty-three Ivorian plants. J Anim Plant Sci. 5: 550-558.
[42] Katalinic V, Mozina S, Skroza D, Generalic I, Abramovic H, Milos M, Ljubenkov I, Piskernik S, Pezo I, Terpinc P, Boban M. (2010). Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). J Food Chem. 119: 715-723.
[43] Payne VK, Kollins EN, Wabo PJ, Yondo J, Komtangi M, Mpoame M, Bilong BCF. (2013). In vitro comparative effect of extracts of the seeds of Embelia rowlandii (Myrsinaceae) on the eggs and L1 and L2 larval stages of the parasitic nematode Heligmosomoides bakeri (Nematoda; Heligmosomatidae). Afr J Biotechnol. 12: 205-211.
[44] Martin RJ. (1997). Mode of action of anthelmintic drugs. Vet J. 154: 11-34.
[45] Athanasiadou S, Githiori J, Kyriazakis I. (2007). Medicinal plants for helminth parasite control: facts and fiction. Animal. 1: 392-1400.
[46] Vargas MJJ, Torres-Acosta JFJ, Aguilar-Caballero AJ, Sandoval-Castro CA, Hoste H, Chan-Pérez JI. (2014). Anthelmintic activity of acetone–water extracts against Haemonchus contortus eggs: Interactions between tannins and other plant secondary compounds. Vet Parasitol. 206: 322-327.
[47] Maestrini M, Tava A, Mancini S, Tedesco D, Perrucci S. (2020). In Vitro Anthelmintic Activity of Saponins from Medicago spp. Against Sheep Gastrointestinal Nematodes. Molecules. 25: 242.
[48] Cabardo DE, Portugaliza HP. (2017). Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. Int J Vet Sci Med. 5: 30-34.
[49] Price KR, Johnson IT, Fenwick GR. (1987). The chemistry and biological significance of saponins in foods and feedstuffs. CRC Crit Rev Food Sci Nutr. 26: 27-135.
[50] Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007) In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against Haemonchus contortus. J Ethnopharmacol. 110: 428-433.
[51] Brunet S. (2008). Analyse des mécanismes d’action antiparasitaire de plantes riches en substances polyphénoliques sur les nématodes du tube digestifs des ruminants. Thèse de Doctorat, Université Paul Sabatier de Toulouse, Toulouse, France, p246.
[52] Aceves J, Erlij D, Martínez-Maranón R. (1970). The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. J Pharmacol. 38: 602-607.
[53] Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD, Lewis JA, Sattelle DB. (2004). The Caenorhabditis elegans unc-63 gene encodes a levamisole sensitive nicotinic acetylcholine. J Biol Chem. 279: 42476-42483.
[54] Bidie ADP, Adeoti FM, Yapo FA, Tiekpa JW, N’guessan JD, Djaman JA. (2016). Effet de l’extrait total aqueux de Chrysophyllum perpulchrum sur les paramètres hématologiques, biochimiques et la croissance pondérale des rats wistar sains. Rev. Ivoir. Sci. Technol. 28: 333-348.
[55] Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM. (2012). Acute and 28-Day Subchronic Oral Toxicity of an Ethanol Extract ofZingiber zerumbet (L.) Smith in Rodents. Evid Based Complement Alternat Med. 2012: 1–11.
[56] Davi G, Patrono C. (2007). Platelet activation and atherothrombosis. N Engl J Med. 357: 2482-2494.
[57] Guillot N (2008) Plaquettes sanguines et mégacaryocytes humains: impact de différentes concentrations d’acide docosahexaenoïque sur leur activation et leur état redox. Sciences du Vivant [q-bio]. Thèse de Doctorat, Université Claude Bernard - Lyon I.
[58] Kumar G, Banu GS, Pappa PV, Sundararajan M, Pandian MR. (2004). Hepatoprotective activity of Trianthema portulacastrum L. against paracetamol and thioacetamide intoxication in albino rats. J Ethnopharmacol. 92 (1): 37-40.
[59] Lazare T, Jacques DY, Michel OA. (2011). Alcoolisation chronique des rats (Rattus norvegicus) de souche Wistar à une eau-de-vie traditionnelle produit en Côte d’Ivoire (Koutoukou). J Appl Biosci. 41: 2772-2779.
[60] Unuofin JO, Otunola GA, Afolayan AJ. (2018). Acute and subacute toxicity of aqueous extract of the tuber of Kedrostis africana (L.) Cogn in Wistar rats. J Complement Integr Med. 1-11.
[61] Wassan KM, Najati S, Wong J, Kwong M. (2001). Assessing plasma lipid levels, body weight and renal toxicity following chronic oral administration of a water soluble phytostanol compound FM-VP4, to gerbits. J Pharm Sci. 4: 228-234.
[62] Mohsen T, Seyed NO, Zatollah A. (2017). Sub-chronic oral toxicity of Cuminum cyminum L.’s essential oil in female Wistar rats. Regul Toxicol Pharmacol. 88: 138-143.
[63] Palani S, Raja R, Kumar P, Jayakumar S. (2009). Therapeutic efficacy of Pimpinella tirupatiensis (Apiaceae) on acetaminophen induced nephrotoxicity and oxidative stress in male albino rats. J Pharm Tech Res. 1: 925-934.
[64] Hawryluk EB, Izikson L, English JC. 2010. Non-Infectious Granulomatous Diseases of the Skin and their Associated Systemic Diseases. Am J Clin Dermatol 11: 171-181.
Cite This Article
  • APA Style

    Issiyakou Haman, Ahmadou Adamou, Francis Nveikoueing, Nicolas Yanou Njintang, Dieudonné Ndjonka. (2021). In vitro Anthelmintic Activity of Tephrosia pedicellata on Two Nematodes (Haemonchus contortus, Caenorhaditis elegans) and Its In vivo Toxicity on Rats. Journal of Diseases and Medicinal Plants, 7(4), 87-97. https://doi.org/10.11648/j.jdmp.20210704.11

    Copy | Download

    ACS Style

    Issiyakou Haman; Ahmadou Adamou; Francis Nveikoueing; Nicolas Yanou Njintang; Dieudonné Ndjonka. In vitro Anthelmintic Activity of Tephrosia pedicellata on Two Nematodes (Haemonchus contortus, Caenorhaditis elegans) and Its In vivo Toxicity on Rats. J. Dis. Med. Plants 2021, 7(4), 87-97. doi: 10.11648/j.jdmp.20210704.11

    Copy | Download

    AMA Style

    Issiyakou Haman, Ahmadou Adamou, Francis Nveikoueing, Nicolas Yanou Njintang, Dieudonné Ndjonka. In vitro Anthelmintic Activity of Tephrosia pedicellata on Two Nematodes (Haemonchus contortus, Caenorhaditis elegans) and Its In vivo Toxicity on Rats. J Dis Med Plants. 2021;7(4):87-97. doi: 10.11648/j.jdmp.20210704.11

    Copy | Download

  • @article{10.11648/j.jdmp.20210704.11,
      author = {Issiyakou Haman and Ahmadou Adamou and Francis Nveikoueing and Nicolas Yanou Njintang and Dieudonné Ndjonka},
      title = {In vitro Anthelmintic Activity of Tephrosia pedicellata on Two Nematodes (Haemonchus contortus, Caenorhaditis elegans) and Its In vivo Toxicity on Rats},
      journal = {Journal of Diseases and Medicinal Plants},
      volume = {7},
      number = {4},
      pages = {87-97},
      doi = {10.11648/j.jdmp.20210704.11},
      url = {https://doi.org/10.11648/j.jdmp.20210704.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jdmp.20210704.11},
      abstract = {In Cameroon, the practice of traditional medicine in the treatment of intestinal helminthiasis is a reality and habits in the lives of traditional healers and breeders for various reasons related to their local life situations. In the valorization of medicinal plants in the treatment of digestive parasitosis as an alternative to synthetic anthelmintics, a study was carried out in order to verify their anthelmintic activity and the level of their toxicity. The present study was carried out to determine the in vitro anthelminthic activity of Tephrosia pedicellata extracts. Aqueous and hydroethanolic leaves extracts at different concentrations were tested against Haemonchus contortus development stages, mutant and wild type of free-living nematode Caenorhabditis elegans. The two plant extracts were then chemically screened and their toxicological profile was established using albino rats. Hydroethanolic extract was the most potent by killing Haemonchus contortus adults (LC50: 0.038 mg/mL after 24 hours), infesting larvae (LC50: 0.22 mg/mL after 48 hours) and inhibiting egg hatching (IC50: 0.76 mg/mL after 48 hours). The two plant extracts showed same activity on Caenorhabditis elegans levamisole non-sensitive (LC50: 0.26 mg/mL after 48 hours) and sensitive strains (LC50: 0.25 mg/mL after 48 hours), showing different mode of action to that of levamisole. Several plant chemicals were identified from both extracts, with higher content of polyphenol compounds (562.91 mg GAE/g DW), flavonoids (135.96 mg RE/g DW), condensed tannins (228.50 mg CE/g DW) and saponins (206.83 mg SE/g DW) obtained with the hydroethanolic extract. No toxic effect was observed during acute toxicity study. Moreover, apart from the significant increase of platelets and Aspartate transaminase (p=0.001) and the glomerular inflammation in the lungs at the dose of 1000 mg/kg, no harmful variation of haematological and biochemical parameters of rats were observed. The pattern of anthelmintic activity of these extracts on Caenorhabditis elegans and the non-toxic effect of hydroethanolic extract provide a way for new anthelminthic drug.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - In vitro Anthelmintic Activity of Tephrosia pedicellata on Two Nematodes (Haemonchus contortus, Caenorhaditis elegans) and Its In vivo Toxicity on Rats
    AU  - Issiyakou Haman
    AU  - Ahmadou Adamou
    AU  - Francis Nveikoueing
    AU  - Nicolas Yanou Njintang
    AU  - Dieudonné Ndjonka
    Y1  - 2021/10/12
    PY  - 2021
    N1  - https://doi.org/10.11648/j.jdmp.20210704.11
    DO  - 10.11648/j.jdmp.20210704.11
    T2  - Journal of Diseases and Medicinal Plants
    JF  - Journal of Diseases and Medicinal Plants
    JO  - Journal of Diseases and Medicinal Plants
    SP  - 87
    EP  - 97
    PB  - Science Publishing Group
    SN  - 2469-8210
    UR  - https://doi.org/10.11648/j.jdmp.20210704.11
    AB  - In Cameroon, the practice of traditional medicine in the treatment of intestinal helminthiasis is a reality and habits in the lives of traditional healers and breeders for various reasons related to their local life situations. In the valorization of medicinal plants in the treatment of digestive parasitosis as an alternative to synthetic anthelmintics, a study was carried out in order to verify their anthelmintic activity and the level of their toxicity. The present study was carried out to determine the in vitro anthelminthic activity of Tephrosia pedicellata extracts. Aqueous and hydroethanolic leaves extracts at different concentrations were tested against Haemonchus contortus development stages, mutant and wild type of free-living nematode Caenorhabditis elegans. The two plant extracts were then chemically screened and their toxicological profile was established using albino rats. Hydroethanolic extract was the most potent by killing Haemonchus contortus adults (LC50: 0.038 mg/mL after 24 hours), infesting larvae (LC50: 0.22 mg/mL after 48 hours) and inhibiting egg hatching (IC50: 0.76 mg/mL after 48 hours). The two plant extracts showed same activity on Caenorhabditis elegans levamisole non-sensitive (LC50: 0.26 mg/mL after 48 hours) and sensitive strains (LC50: 0.25 mg/mL after 48 hours), showing different mode of action to that of levamisole. Several plant chemicals were identified from both extracts, with higher content of polyphenol compounds (562.91 mg GAE/g DW), flavonoids (135.96 mg RE/g DW), condensed tannins (228.50 mg CE/g DW) and saponins (206.83 mg SE/g DW) obtained with the hydroethanolic extract. No toxic effect was observed during acute toxicity study. Moreover, apart from the significant increase of platelets and Aspartate transaminase (p=0.001) and the glomerular inflammation in the lungs at the dose of 1000 mg/kg, no harmful variation of haematological and biochemical parameters of rats were observed. The pattern of anthelmintic activity of these extracts on Caenorhabditis elegans and the non-toxic effect of hydroethanolic extract provide a way for new anthelminthic drug.
    VL  - 7
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon

  • Sections