Electron doped Ca1-xSbx MnO3 (X = 0 to 0.4) compound when prepared by high temperature solid state reaction, exhibits orthorhombic distorted perovskite structure. A systematic, continuous doping increases the metal – insulator transition temperature to above the room temperature (≈431 to 469 K); due to the mismatch of ionic radii in A site rising anti - site effect, which consequently changes the bond length. Doping induced metal – insulator transition accompanied by structural transition is reflected through the drastic changes in the parameters like cation size variance factor (), average ionic radius
Published in | International Journal of Materials Science and Applications (Volume 2, Issue 4) |
DOI | 10.11648/j.ijmsa.20130204.12 |
Page(s) | 128-135 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Phase Transition, Pervoskite, High Tc
[1] | M. Kar and S.Ravi,"Metal-Insulator in electron doped Ba 1-xLaxMnO3 Compounds" Pramana, 58 [5&6]1009-1012(2002). |
[2] | C. Zener "Interaction between the D-Shells in the transiton Metals" Phys. Rev. 81[5] 440-444(1951). "Ferromagnetic Compounds of Manganese with Perovskite structure" Phys. Rev. 82[3] 403-405(1951). |
[3] | E. Bose, S.Karmakr and B.K.Chanudhri, "Small polaron hopping conduction and magnetic frustration in the electron-doped charge ordered Ca0.85La0.15Mno3 System "J.Phys.Conds.Matter19 486201(8pp) (2007). |
[4] | Q. Zhou and B. J. Kennedy, "The nature of the orthorhombic to tetragonal phase transition in Sr1-xCaxMnO3" J. Solid State Chem. 179 3568–3574 (2006). |
[5] | B.J.Kennedy, P.J. Saines, Q. Zhou, Z. Zhang, M. Matsuda, M. Miyake. "Structural and electronic phase transitions in Sr1-xCexMnO3perovskites" J.Solid State Chem. 181 2639–2645 (2008). |
[6] | M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi and H. Arai. "Electrical Transport Properties and High – Temperature Thermoelectric Performance of (Ca0.9 M 0.1 )MnO3 (M = Y , La, Ce, Sm, ln, Sn, Sb, Pb,Bi)" J.Solid State Chem. 120 105-111(1995). |
[7] | P. Duan, G Tan, S. Dai, Y. Zhou, Z. Chen, "Colossal magnetoresistance effect of the electron-doped manganese oxide La1-xSbxMnO3 (x=0.05,0.1)" J.Phys.: Condens. Matter 15 4469–4476(2003) |
[8] | C.G.Hu, H.Liu, C.S.Cao, L.Y.Zhang, D. Davidovic and Z.L.Wang. "Size-Manipulable Synthesis of Single – Crystalline BaMnO3 and BaTi/2 Mn 1/2 O3 "J.Phy.Chem. B.Lett. 110 [29] 14050-14054 (2006). |
[9] | D. Kim, J. Yoo, I. Kim, and J. Song, "Dielectric and piezoelectric of Bi2O3 added (Pb,Ca,Sr) X(Ti,Mn,Sb))3 ceramics sintered at low temperature", J.Appl.Phys105 061642(4pp) (2009). |
[10] | Y. Akishige, K. Honda and S. Tsukada, "Synthesis and dielectric Properties of Mn-Doped BaTi2O5" ceramics, Jap. J. Appl. Phys50 09NC10(2011). |
[11] | H. Liu, C. Hu and Z. L. Wang," Composite-Hydroxide –Mediated approach for the synthesis of nanostructures of complex functional –oxides", Nanoletters,6 [7] 1535-1540 (2006). |
[12] | W. Liu, Xinfeng, and J. Sharp, "Low – temperature soldi state reaction synthesis and thermoelectric properties of high –performance and low-cost Sb-doped Mg 2 Si 0.6Sn0.4 "J.Phys. D: Appl.Phys.43 085406(6pp)(2010). |
[13] | M.E. Melo Jorge, M.R.Nunes, R.Silva Maria, and D.Sousa "Metal –Insulator Transition Induced by Ce Doping in CaMnO3" Chem. Mater. 17 [8] 2069-2075 (2005) |
[14] | S L Yuan, J. Tang, Z C Xia, L F Zhao, l Liu, W Chen, G H Zhang, L J Zhang, W Feng, Q H Zhong and S Liu, "Effect of sintering temperature on electronic transport and low –field colossal magnetoresistance in sol-gel prepared polcrystals of nominal La 2/3Ca1/3Mn0.96 Cu0.04)O3" J. Phys. 36 1446–1450 (2003). |
[15] | Y. II Kim, D. Kim, C. Sub Lee, "Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature –controlled coprecipitation method" Physica B 337 42-51 (2003). |
[16] | V.A.Blagojevic, J.P.Carlo, L.E.Brus, M.L.Steigerwald, Y.J.Uemura, S,J.L.Billinge, W.Zhou, P.W.Stephens, A.A. Aczel and G.M. Luke, "Magnetic phase transition in V2O3 "Phy.Rev.B 82 094453(6pp)( 2010). |
[17] | K.Vijayanandhi, T.R.N.Kutty, "Phase Conversions in Calcium Manganites with changing Ca/Mn ratios and their influence on the electrical transport properties", J.MaterSci: Mater Electron 20 445-454(2009). |
[18] | K.R.Poeppelmeier,M.E.Leonowicz, J.M.Longo, CaMn0.25 and Ca2MnO3.5: " New oxygen –defect perovskite –type oxides " J.Solid State Chem 44[1] 89-98(1982). |
[19] | John Philip and T R N Kutty" Effect of valence fluctuations in A sites on the transport properties of La1-xRxMnO3 (R = Ce, Pr)"J. Phys.: Condens. Matter 11 8537-8542 (1999) |
[20] | F.S. Razavi, G.V.Sudhakar Rao andH.Jalili, H.U.Habermeier, "Pressure Induced phase transition in periodic micro twinned thin film of La0.88Sr0.1MnO3", Appl. Phys. Lett88, 174103-3(2006). |
[21] | J.Klein,,J.B.Philipp, G.Carbonwe, A.Vigliante, L.Alff, and R.Gross, "Transport anisotropy in biaxially strained La2/3Ca1/3 MnO3 thin flims", Phy.Rev.B66 052414-4(2002). |
[22] | Y. Liu, Y. Li, H. Zhang, D. Chen and Q. Wen, "Study on magnetic properties of low temperature sintering M-Barium hexaferrites", J.Appl.Phys107 09A507-3(2010). |
[23] | M. Ziese, "Spontaneous resistivity anisotropy and band structure of La 0.7Ca 0.3 MnO3 and Fe3O4 films" Phys. Rev. B 62 [2]1044-1050(2000). |
[24] | P.Schiffer,A.P.Ramirez,W.Bao and S.W.Cheong, "Low Temperature Magnetoresitance and the magnetic phase diagram ofmLa 1-x Cax MnO3 " Phy. Rev. Lett. 75 [18]3336-3339(1995). |
[25] | X.Wang and X.G.Zhang, "Low–Temperature resistivity in a nearly half-metallic Ferromagnet" Phys.Rev.Lett82[21] 4276-4279(1999). |
[26] | Y. Sun, M.B.Salamon, W. Tong and Y. Zhang, "Magnetism, electronic transport, and colossal magnetrosistance of (La0.7-x Gdx) Sr0.3 MnO3(0≤x≤0.6)" Phys. Rev. B 66 094414-6(2002). |
[27] | J.A.Souzaand R.F.Jardim ,"Magnetoresistivity in the clustered state of La 0.7-xYx Ca0.3 MnO3manganites" Phys. Rev. B 71 0554404(2005). |
[28] | P. SumanaPrabhu, M.S. Ramachandra Rao and U.V. Varadaraju, "TcSupperession and conduction mechnisms in Bi 2.1Sr1.93Ca0.97-x R x Cu2O 8+y (R=Pr,Gd. and Er) systems" Phys. Rev. B 50[10] 6929-6938(1994). |
[29] | W. Khan, A. H.Naqvi, M. Gupta, S. Husain and R kumar "Small polaron hopping conduction mechanism in Fe doped LaMnO3 "J.Chem. Phys. 135 054501(2011). |
[30] | V.Ponnambalam, U.Varadaraju ,"Observation of variable-range hopping up to 900K in the YLaxBa2-xCu3O7-δ system", Phys. Rev. B 52[22] 16213-16216(1995). |
[31] | Hwang H Y, Cheong S W, Ong N P and Batlogg B, " Spin polarized intrgrain tunneling in La 2/3Sr1/3 MnO3",Phys. Rev. Lett. 77[10] 2041-2044(1996). |
[32] | Chang-Yi Chou,N.Kavrav, Yung-Kang Kuo and Dong – HaiKuo, "Electrical properties of A/B-site substituted Ni- deficient La(Ni0.6Fe0.3)O3 Perovskites with A= Ag+, Pd2+, Nd3+ and B= Mn3+, Ga3+ " J.Appl.Phys. 103 093716-7(2008). |
[33] | O. Chmaissem, B.Dabrowski, S.Kolesnik, J.Mais, D.E.Brown, R.Kruk, P.Prior, B.Pyles, and J. D. Jorgensen, "Relationship between structural parameters and the Neel temperature in Sr1-xCaxMnO3(0≤ x ≤ 1) and Sr1-yBayMnO3 (Y≤0.2)"Phys. Rev B. 64 134412-9(2001). |
[34] | Lide M. Rodriguez-Martinez and J. Paul Attfield, "Cationdisporder and size effects in magnetroresistive manganese oxide pervoskites" Phys. Rev. B 54 R15 622(1996). |
[35] | K.Padmavathi, G.Venkataiah, P.Venugopal Reddy," Electrical behavior of some rare-earth –doped Nd0.33Ln 0.34Sr0.33 MnO3manganites" J. Magn. Magn. Mater. 309 237-243(2007). |
[36] | S. Bhattacharya, S. Pai, R.K.Mukherjee, B.K.Chaudhuri, S.Neeleshwar, Y.Y.Chen, S.Mollah and H.D.Yang, Development of pulsed magnetic field and study of magnetotransport properties of K-doped La1.xCax-yKyMnO3 CMR materials J. Magn. Magn. Mater. 269 359-371(2004). |
[37] | E.K Abdel-Khalek, W.M. EL-Meligy, E.A. Mohammed, T.Z. Amer and H.A. Sallam."Study of relationship between electrical and magnetic properties and Jahn- Teller distortion in R0.7Ca0.3Mn0.95Fe0.05O3" J. Phys. Condens. Matter 21 026003(2009). |
[38] | J.C.Grenier, M.Pouchard, P.Hagenmuller, "Vacancy ordering in oxygen –defficientPerovskite –related ferrites" Structu.Bond. 47 1(1981). |
[39] | W. Hwan Jung, "Variable range hopping conduction in Gd1/3Sr2/3 FeO3",Physica B 304 75-78(2001). |
[40] | Y. Wang, Y. Sui, J. Cheng, X. Wang, Z. Lu, and W. Su, "High Temperature Metal – Insulator Transition Induced by Rare-Earth doping in perovskite CaMnO3"J.Phys.Chem.C. 13 12509-12516(2009) |
APA Style
R. Kannan, D. Vanidha, A. Arun Kumar, K. U. Rama Tulasi, R. Sivakumar. (2013). Metal-Insulator Phase Transition and Structural Stability in ‘Sb’ Doped CaMnO3 Perovskite. International Journal of Materials Science and Applications, 2(4), 128-135. https://doi.org/10.11648/j.ijmsa.20130204.12
ACS Style
R. Kannan; D. Vanidha; A. Arun Kumar; K. U. Rama Tulasi; R. Sivakumar. Metal-Insulator Phase Transition and Structural Stability in ‘Sb’ Doped CaMnO3 Perovskite. Int. J. Mater. Sci. Appl. 2013, 2(4), 128-135. doi: 10.11648/j.ijmsa.20130204.12
AMA Style
R. Kannan, D. Vanidha, A. Arun Kumar, K. U. Rama Tulasi, R. Sivakumar. Metal-Insulator Phase Transition and Structural Stability in ‘Sb’ Doped CaMnO3 Perovskite. Int J Mater Sci Appl. 2013;2(4):128-135. doi: 10.11648/j.ijmsa.20130204.12
@article{10.11648/j.ijmsa.20130204.12, author = {R. Kannan and D. Vanidha and A. Arun Kumar and K. U. Rama Tulasi and R. Sivakumar}, title = {Metal-Insulator Phase Transition and Structural Stability in ‘Sb’ Doped CaMnO3 Perovskite}, journal = {International Journal of Materials Science and Applications}, volume = {2}, number = {4}, pages = {128-135}, doi = {10.11648/j.ijmsa.20130204.12}, url = {https://doi.org/10.11648/j.ijmsa.20130204.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20130204.12}, abstract = {Electron doped Ca1-xSbx MnO3 (X = 0 to 0.4) compound when prepared by high temperature solid state reaction, exhibits orthorhombic distorted perovskite structure. A systematic, continuous doping increases the metal – insulator transition temperature to above the room temperature (≈431 to 469 K); due to the mismatch of ionic radii in A site rising anti - site effect, which consequently changes the bond length. Doping induced metal – insulator transition accompanied by structural transition is reflected through the drastic changes in the parameters like cation size variance factor (), average ionic radius , tolerance factor (t) and To-which is correlated to the band related transport properties. Structural transition from the phase of perovskite to Brownmillerite has been found for the compositions x = 0.3 and 0.4, which is attributed due to the ionic radii mismatch. Doping exerts chemical pressure by modifying compression of A-O bond and relaxation of B-O bond, giving rise to strain similar to external pressure in ABO3 perovskite. The dependence of electrical transport at high temperature has been studied, by employing variable range hopping and small polaron hopping model as an account for the experimental observation due to disorder induced localization.}, year = {2013} }
TY - JOUR T1 - Metal-Insulator Phase Transition and Structural Stability in ‘Sb’ Doped CaMnO3 Perovskite AU - R. Kannan AU - D. Vanidha AU - A. Arun Kumar AU - K. U. Rama Tulasi AU - R. Sivakumar Y1 - 2013/07/20 PY - 2013 N1 - https://doi.org/10.11648/j.ijmsa.20130204.12 DO - 10.11648/j.ijmsa.20130204.12 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 128 EP - 135 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20130204.12 AB - Electron doped Ca1-xSbx MnO3 (X = 0 to 0.4) compound when prepared by high temperature solid state reaction, exhibits orthorhombic distorted perovskite structure. A systematic, continuous doping increases the metal – insulator transition temperature to above the room temperature (≈431 to 469 K); due to the mismatch of ionic radii in A site rising anti - site effect, which consequently changes the bond length. Doping induced metal – insulator transition accompanied by structural transition is reflected through the drastic changes in the parameters like cation size variance factor (), average ionic radius , tolerance factor (t) and To-which is correlated to the band related transport properties. Structural transition from the phase of perovskite to Brownmillerite has been found for the compositions x = 0.3 and 0.4, which is attributed due to the ionic radii mismatch. Doping exerts chemical pressure by modifying compression of A-O bond and relaxation of B-O bond, giving rise to strain similar to external pressure in ABO3 perovskite. The dependence of electrical transport at high temperature has been studied, by employing variable range hopping and small polaron hopping model as an account for the experimental observation due to disorder induced localization. VL - 2 IS - 4 ER -