Polycarbonate bullet proof and acrylic heat resistant glasses are used as the functional material in many industrial application. In automobile industries, banks and cabins, polycarbonate bullet proof glass has been used for security purpose. Similarly, acrylic heat resistant glass is used in furnace, microwaves, space craft and airplane applications. In this experimental research paper, Taguchi modal and Grey relational analysis are utilized for the ultrasonic drilling in these materials. For experimentation, input parameters are concentration, abrasive, grit size, power rating, hydrofluoric acid and tool materials. Output parameters are material removal rate, tool wear rate and surface roughness. In which, surface roughness is most significant output parameter, because it describe accuracy of the process. Through optimization analysis, Taguchi modal suggest that 40% abrasive concentration, mixture of (Alumina, Silicon carbide and Boron carbide) abrasive in 1:1:1, 600 grit of abrasive and 1.5% hydrofluoric acid gives best results for drilling in polycarbonate bullet proof glass material. Similarly, in acrylic heat resistant glass, mixture of Silicon carbide and Boron carbide (1:1), 600 grit abrasive and 1% hydrofluoric acid gives the optimum results. Concentration of slurry, abrasive grit size and hydrofluoric acid are the most significant parameters for ultrasonic drilling in both materials. Through Grey relational analysis the surface roughness is improved by 40% and 48% in polycarbonate (UL-752) and acrylic (BS-476) glass respectively.
Published in | International Journal of Mechanical Engineering and Applications (Volume 5, Issue 3) |
DOI | 10.11648/j.ijmea.20170503.12 |
Page(s) | 136-154 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Polycarbonate, Acrylic, Glass, HF Acid, Taguchi, GRA, USM, Surface Roughness
[1] | Dvivedi, A.; Kumar, P. Surface quality evaluation in ultrasonic drilling through the taguchi technique. International Journal of Advanced Manufacturing Technology 2007; 34 (1–2): 131-140. DOI: 10.1007/s00170-006-0586-3. |
[2] | Gauri, S. K.; Chakravorty, R.; Chakraborty, S. Optimization of correlated multiple responses of ultrasonic machining (USM) process. International Journal of Advanced Manufacturing Technology 2011; 53: 1115-1127. DOI: 10.1007/s00170-010-2905-y. |
[3] | Gilmore, R. Ultrasonic machining- a case study. Journal of Materials Processing Technology 1991; 28 (1–2): 139-148. http://dx.doi.org/10.1016/0924-0136(91)90213-X |
[4] | Ghahramani, B.; Wang, Z. Y. Precision ultrasonic machining process: A case study of stress analysis of ceramic (Al2O3). International Journal of Machine Tools and Manufacture 2001; 41 (8): 1189-1208. http://dx.doi.org/10.1016/S0890-6955(01)00011-6 |
[5] | Goetze, D. Effect of vibration amplitude, frequency, and composition of the abrasive slurry on the rate of ultrasonic machining in ketos tool steel. Journal of Acoustical Society of America 1956; 28 (6): 1033-1045. doi: http://dx.doi.org/10.1121/1.1908545 |
[6] | Kennedy, D. C.; Grieve R. J. Ultrasonic machining- a review. The Production Engineer 1975; 54 (9): 481-486. DOI: 10.1049/tpe: 19750245. |
[7] | Singh, K.; Ahuja, I. P. S. “Ultrasonic machining processes- review paper”, International Journal for multi-disciplinary Engineering and Business Management, 2014; 2 (3): 57-66. |
[8] | Singh, K.; Kumar, V. “A Study on the Tool Geometry and Stresses Induced in Tool in Ultrasonic Machining Process Applied for the Tough and Brittle Materials”, International Journal for multi-disciplinary Engineering and Business Management, 2014; 2 (3): 67-71. |
[9] | Singh, K.; Kumar, V. S. “Finite Element Analysis of Ultrasonic Machine Tool”, International journal of engineering research and technology, 2014; 3 (7): 1647-1650. |
[10] | Singh, K., Ahuja, I. P. S.; Kapoor. J. Study the effect of abrasive and hydrofluoric acid in ultrasonic machining of plain glass material, In proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control, 19th-20th February, 2015, GZSCCET, BTI, India, ISBN 978-93-5196-055-3. |
[11] | Singh, K., Ahuja, I. P. S. and Kapoor. J. Ultrasonic machining of glass brittle material, In proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control, 19th-20th February, 2015, GZSCCET, BTI, India, ISBN 978-93-5196-055-3. |
[12] | Rao, R. V.; Pawar, P. J.; Davim, J. P. Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms. Materials and Manufacturing Processes 2010; 25 (10): 1120-1130. http://dx.doi.org/10.1080/10426914.2010.489788 |
[13] | Nair, E. V.; Ghosh, A. A fundamental approach to the study of mechanics of ultrasonic machining. International Journal of Production Research 1985; 23: 731-753. http://dx.doi.org/10.1080/00207548508904741 |
[14] | Sahay, C.; Ghosh, S.; Kammila, H. K. Analysis of ultrasonic machining using monte carlo simulation. Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver: USA, 2011. doi: 10.1115/IMECE2011-63240. |
[15] | Thoe, T. B.; Aspinwall, D. K. Combined ultrasonic and electric discharge machining of ceramic coated nickel alloy. Journal of Materials Processing Technology 1999; 92–93: 323-328. http://dx.doi.org/10.1016/S0924-0136(99)00117-X |
[16] | Wiercigroch, M.; Neilson, R. D.; Player, M. A. Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Physics Letters 1999; 259: 91-96. http://dx.doi.org/10.1016/S0375-9601(99)00416-8 |
[17] | Thoe, T. B.; Aspinwall, D. K.; Wise, M. L. H. Review on ultrasonic machining. International Journal of Machine Tools and Manufacture 1998; 38 (4): 239-255. http://dx.doi.org/10.1016/S0890-6955(97)00036-9 |
[18] | Guzzo, P. L.; Raslan, A. A.; De Mello, J. D. B.) Ultrasonic abrasion of quartz crystals. Wear, 2003; 255: 67-77. http://dx.doi.org/10.1016/S0043-1648(03)00094-2 |
[19] | Komaraiah, M; Narasimha Reddy, P. N, A study on the influence of work-piece properties in ultrasonic machining, International Journal of Machine Tools and Manufacture. 1993; 33 (3): 495–505. http://dx.doi.org/10.1016/0890-6955(93)90055-Y |
[20] | Jain, N. K.; Jain, V. K. Modeling of material removal in mechanical type of advanced machining processes- a state of the art review. International Journal of Machine Tools and Manufacture 2001; 41: 1573-1635. http://dx.doi.org/10.1016/S0890-6955(01)00010-4 |
[21] | Jain, V. K. Advanced Machining Processes; Allied publishers private limited: New Delhi, India, 2013. |
[22] | Kumar, J. Ultrasonic machining- a comprehensive review. Machining Science and Technology 2013; 17 (3): 325-379. http://dx.doi.org/10.1080/10910344.2013.806093 |
[23] | Azarhoushang, B.; Akbari, J. Ultrasonic assisted drilling of Inconel 738-LC. International Journal of Machine Tools and Manufacture 2007; 47: 1027-1033. http://dx.doi.org/10.1016/j.ijmachtools.2006.10.007 |
[24] | Haslehurst, M. Manufacturing Technology, 3rd edition, Viva Book, New Delhi, 1981, pp. 270–271. |
[25] | Weilong, C; Zhijian. P, Process of Ultrasonic Machining, Handbook of manufacturing Engineering and Technology, London, 2013. |
[26] | Choi, J. P.; Jeon, B. H.; Kim, B. H. Chemical-assisted ultrasonic machining of glass. Journal of Materials Processing Technology, 2007; 191: 153-156. http://dx.doi.org/10.1016/j.jmatprotec.2007.03.017 |
[27] | Morteza, A. S; Maohammad, N. R, Development of design and manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM, Journal of Modern processes in manufacturing and production, 2014; 3 (2): 59-74. |
[28] | Vinod, Y; Aniruddha, D. Design of horn for rotary ultrasonic machining using the finite element method, International journal of advanced manufacturing technology, 2008; 39 (1): 9-20 DOI: 10.1007/s00170-007-1193-7. |
[29] | H. Hong, T. Y. Hung, Advanced analysis of Nontraditional machining, Springer, (1956); 325-339, ISBN 978-1-4614-4054-3. DOI: 10.1007/978-1-4614-4054-3. |
[30] | Soundararajan, V; Radhakrishnan, V. An experimental investigation on the basic mechanisms involved in ultrasonic machining, International Journal of Machine Tool Design and Research, 1986; 26 (3): 307–321. http://dx.doi.org/10.1016/0020-7357(86)90008-9 |
[31] | Weller, E. J. Non-traditional Machining Processes, 2nd edition, American Society of tool and Manufacturing Engineers, 1984; 15–71. |
[32] | Guzzo, P. L.; Shinohara, A. H.; Raslan, A. A. A comparative study on ultrasonic machining of hard and brittle materials, Journal of the Brazilian Society of Mechanical Science and Engineering, 2004; 26 (1): 56–61, ISSN 1806-3691. doi.org/10.1590/S1678-58782004000100010. |
[33] | Adithan, M. Tool wear characteristics in ultrasonic drilling, Tribology International, 1981; 14 (6): 351–356. http://dx.doi.org/10.1016/0301-679X(81)90103-1. |
[34] | Goetze, D. Effect of vibration amplitude, frequency and composition of the abrasive slurry on the rate of ultrasonic machining in Ketos tool steel, Journal of acoustical society of America, 1956; 28 (6): 1033–1037 Doi: http://dx.doi.org/10.1121/1.1908545 |
[35] | Adithan, M. Abrasive wear in ultrasonic drilling, Tribology International, 1983; 16 (5): 253–255. http://dx.doi.org/10.1016/0301-679X(83)90083-X |
[36] | Adithan, M.; Venkatesh, V. C. Parameter influence on tool wear in ultra-sonic drilling, Tribolology International, 1974; 7 (6): 260–264. http://dx.doi.org/10.1016/0041-2678(74)90106-7 |
[37] | Babitsky, V. I.; Astashev, V. K. Ultrasonic processes and machine, Springer Berlin Heidelberg New York, (2007) ISBN 978-3-540-72060-7. |
[38] | Jain, N. K.; Jain, V. K. Modeling of material removal in mechanical type advanced machining processes: a state of art review, International journal of machine tools and manufacture, 2001; 41 (11): 1573-1635 http://dx.doi.org/10.1016/S0890-6955(01)00010-4 |
[39] | M. A. Moreland, Ultrasonic Machining and Finishing, ASM Handbook, Ceramics and Glasses, 1989: 16: 359–362, ISBN 978-0-87170-022-3. |
[40] | Thoe, T. B.; Aspinwall, D. K.; Wise, M. L. H., Review on ultrasonic machining, International journal of machine tools and manufacture, 1998; 38 (4): 239–255 http://dx.doi.org/10.1016/S0890-6955(97)00036-9 |
[41] | T. J. Drozda, C. Wick, Non-traditional machining, Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers, Vol. 1, Dearborn, MI, 1983, pp. 1–23, ISBN No. 0872633519. |
[42] | Neppiras, E. A. Macrosonics in industry 1. Introduction, Ultrasonics, 1972; 10 (1): 9-13. http://dx.doi.org/10.1016/0041-624X(72)90207-7 |
[43] | Seah, K. H. W.; Wong, Y. S.;. Lee, L. C. Design of tool holders for ultra-sonic machining using FEM, Journal of Material Processing Technology. 1993; 37 (1–4): 801–816. http://dx.doi.org/10.1016/0924-0136(93)90138-V |
[44] | Komaraiah, M.; Manan, M. A.;. Reddy, P. N.; Victor, S. Investigation of surface roughness and accuracy in ultrasonic machining, Precision Engineering, 1988; 10 (2): 59–65. http://dx.doi.org/10.1016/0141-6359(88)90001-3 |
[45] | Neppiras, E. A. Ultrasonic machining and forming, Ultrasonics 1964; 2 (4): 167–173. http://dx.doi.org/10.1016/0041-624X(64)90110-6 |
[46] | Prewo, K. M.; Brennan, J. J.; High Strength silicon carbide fiber-reinforced glass-matrix composites, Journal of material science, 1980; 15 (2): 463-468. DOI: 10.1007/BF00551699. |
[47] | Thoe, T. B.; Aspinwall, D. K.; Wise, M. L. H. The effect of operating parameters when ultrasonic contour machining, in: Proceedings of the 12th Annual Conference of the Irish Manufacturing Committee (IMC-12), Cork, Ireland, September, 1995; 305–312. |
[48] | Adithan, M. Tool wear studies in ultrasonic drilling, Wear, 1974; 29: 81–93. http://dx.doi.org/10.1016/0043-1648(74)90136-7 |
[49] | Kainth, G. S.; Nandy, A.; Singh, K. On the mechanics of material removal in ultrasonic machining, International Journal of Machine Toll Design And Research, 1979; 19 (1): 33–41. http://dx.doi.org/10.1016/0020-7357(79)90019-2 |
[50] | Jain, V. K. Advanced Machining Process, Allied Publisher Pvt. Limited, India, 2002, pp. 28–56. |
[51] | Miller, G. E. Special Theory of Ultrasonic Machining, Journal of applied physics, 1957; 28 (2): 149-156. http://dx.doi.org/10.1063/1.1722698 |
[52] | Neppiras, E. A.; Foskett, R. D. Ultrasonic machining, Phillips Technical Review, 18 (11) (1957) 325–368. |
[53] | Pandey, P. C.; Shan, H. S. Modern Machining Processes, Tata McGraw-Hill, 1980, pp. 7–38 [Chapter 2]. |
[54] | Amin, S. G.; Ahmed, M. H. M.; Youssef, H. A. Computer aided design of acoustic horns for ultrasonic machining using finite element analysis, Journal of material processing technology, 1995; 55: 254-260. http://dx.doi.org/10.1016/0924-0136(95)02015-2 |
[55] | Cook, N. H. Manufacturing Analysis, Addison-Wesley, New York, 1966; 133–138. |
[56] | Graff, K. F. Macrosonics in industry. 5. Ultrasonic machining, Ultrasonics, 1975; 13: 103–109. http://dx.doi.org/10.1016/0041-624X(75)90060-8 |
[57] | Kremer, D. The state of the art of ultrasonic machining, Ann. CIRP, 1981; 30 (1): 107–110. http://dx.doi.org/10.1016/S0007-8506(07)60905-6 |
[58] | Khairy, A. B. E. Assessment of some dynamic parameters for the ultra-sonic machining process, Wear, 1990; 137: 187–198 http://dx.doi.org/10.1016/0043-1648(90)90135-W |
[59] | Singh, K., Ahuja, I. P. S. and Kapoor. J. Comparative study between conventional machining, chemical ultrasonic machining (CUSM) and ultrasonic machining (USM) of plain glass, polycarbonate, acrylic, bullet proof and heat resistant glass, In proceeding, International conference in latest development in materials, manufacturing and quality control, 12th -13th Feb-2016, GZSCCET BTI India, ISSN 978-93-5212-858-7. |
[60] | Jain, V.; Sharma, A. K.; Kumar, P. Investigations on tool wear in micro Ultrasonic machining, Applied Mechanics and Material, Tranc Tech Publication Switzerland, 2012; 110-116: 1561-1566. DOI: 10.4028/www.scientific.net/AMM.110-116.1561. |
[61] | I. Kaczmarek, Impact Grinding (Ultrasonic machining)—Book Chapter: 21 Principles of Machining by Cutting Abrasion and Erosion, Peter Peregrinus Ltd, Stevenage, 1976; 448–462, ISBN 0901223662. |
[62] | Dharmadhikari, S. W.; Sharma, C. S. Optimization of abrasive life in Ultrasonic Machining, Journal of Manufacturing Science and Engineering, 1985; 107 (4): 361-364. doi: 10.1115/1.3186010. |
[63] | Bekrenev, N. V.; Muldasheve, G. K.; Petrovskii, A. P.; Tsvetkova, O. A. Influence of the thermal effect on the cutting forces in the ultrasonic machining of high strength material, Russian Engineering Research, ISSN 1068-798X, 2015; 35 (10): pp. 758-759 DOI: 10.3103/S1068798X15100056. |
[64] | Hasiao, Y. F., Tarng, Y. S. and Huang, W. J. Optimization of plasma are welding parameters by using the Taguchi method with the Grey relational analysis. Materials and manufacturing processes 2008, 23, 51-58. doi.org/10.1080/10426910701524527. |
[65] | Lin, C. L., Lin, J. L. and Ko, T. C. Optimisation of EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. International journal of advanced manufacturing technology 2002; 19: 271-277. doi: 10.1007/s001700200034. |
[66] | You, M. L., Shu, C. M., Chen, W. T. and Shyu, M. L. Analysis of cardinal grey relational grade and grey entropy on achievement of air pollution reduction by evaluating air quality trend in Japan. Journal of cleaner production 2017; 142 (4): 3883-3889. doi.org/10.1016/j.jclepro.2016.10.072. |
[67] | Patil, P. J. and Patil, C. R. Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade. Perspective in Science 2016; 8: 367-369. doi.org/10.1016/j.pisc.2016.04.077. |
[68] | Ahmad, N., Kamal, S., Raza, Z. A. and Hussain, T. Multi-response optimization in the development of oleo-hydrophobic cotton fabric using Taguchi based grey relational analysis. Applied surface science 2016; 367: 370-381. doi.org/10.1016/j.apsusc.2016.01.165. |
[69] | Lin, Y. H., Lee, P. C. and Chang, T. P. Practical expert diagnosis modal based on the grey relational analysis technique. Expert system with applications 2009; 36: 1523-1528. doi.org/10.1016/j.eswa.2007.11.046. |
[70] | Lin, H. L. The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process. Journal of intelligent manufacturing 2012; 23 (5): 1671-1680. doi: 10.1007/s10845-010-0468-2. |
[71] | Manivannan, S., Prasanna, S. and Aramugam, R. Multi-objective optimization of flat plate heat sink using Taguchi based grey relational analysis. International journal of advanced manufacturing technology 2011; 52: 739-749. DOI: 10.1007/s00170-010-2754-8. |
[72] | Meena, V. K. and Azad, M. S. Grey relational analysis of micro EDM machining of Ti-6Al-4V alloy. Material and manufacturing processes 2012; 27: 973-977. doi.org/10.1080/10426914.2011.610080. |
[73] | Singh, P. N., Raghukandan, K. and Pai, B. C. Optimization by grey relational analysis of EDM parameters on machining Al-10%SiCp composites. Journal of material processing technology 2004; 155-156: 1658-1661. doi.org/10.1016/j.jmatprotec.2004.04.322. |
[74] | Sreenivasulu, R. and Srinivasarao, C., 2012. Application of Grey relational analysis for surface roughness and roundness error in drilling of AL 6061 alloy. International journal of lean thinking 2012; 3 (2): 68-78. |
[75] | Chang, S.; Bone, G. M. Burr size reduction in drilling by ultrasonic assistance. Robotics and Computer-Integrated Manufacturing, 2005, 120, 442-450. |
[76] | Fan, W. H.; Chao, C. L.; Chou, W. C.; Chen, T. T; Chao, C. W. Study on the Surface Integrity of Micro-Ultrasonic Machined Glass-Ceramic Material, Key Engineering Materials, 2009; 407-408: 731-734. DOI: 10.4028/www.scientific.net/KEM.407-408.731. |
[77] | Kumar, J.; Khamba, J. S. An Investigation into the effect of work material properties, tool geometry and abrasive properties on performance indices of ultrasonic machining. International Journal of Machining and Machinability of Materials, 2009; 5 (2/3): 347-365. http://dx.doi.org/10.1504/IJMMM.2009.023399. |
[78] | Schorderet, A. Deghilage, E. Agbeviade, K. tool type and hole diameters influence in deep ultrasonic drilling of micro holes in glass, Procedia CIRP, 2013; 565-570. http://dx.doi.org/10.1016/j.procir.2013.03.072 |
[79] | Elliot, S. R. Physics of Amorphous Materials. Longman group ltd, London, New York, 1984; 20 (9): ISBN 0-582-44636-8. |
[80] | Scholze, H. Glass – Nature, Structure, and Properties. Springer, Verlag, New York, (1991) ISBN 978-1-4613-9069-5. DOI: 10.1007/978-1-4612-9069-5. |
[81] | Phillips, J. C. Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys, Journal of Non-Crystalline Solids. 1979; 34 (2): 153-181. |
[82] | Folmer, J. C. W., Franzen, S. Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory, Journal of Chemical Education. 2003; 80 (7): 813-818. DOI: 10.1021/ed080p813. |
[83] | Phillips D. C, Sambell R. A. J, Bowen D. H, The mechanical properties of carbon fiber reinforced pyrex glass, Journal of Material Science, 1972; 7 (12): 1454-1464. DOI: 10.1007/BF00574937. |
[84] | "Dr Karl's Homework: Glass Flows" Australia: ABC. 26 January 2000. Retrieved 24 October 2009. |
[85] | Dutra, Z. E. Do Cathedral Glasses Flow? American Journal of Physics, 66 (5) (1998), pp. 392–396. |
[86] | Vogel, W.; Kreidl, N.; Chemistry of Glass, Wiley, 1985. ISBN 978-0-916094-73-7. |
[87] | Stookey, S. D.; Beall, G. H. Explorations in Glass: An Autobiography, Wiley, 2000, ISBN 978-1-57498-124-7. |
[88] | Noel C. Stokes, The Glass and Glazing Handbook, Standards Association of Australia, (1998) ISBN 073372468X. |
[89] | L. D. Rozenberg (Ed.), Physical Principles of Ultrasonic Technology, vols. 1 and 2, Plenum Press, New York, 1973, ISBN 978-1-4684-8217-1. |
[90] | Ultrasonic machining of glass at the N. P. T. L., Machinery, May 1964, pp. 1172–1176. |
[91] | William. S.; Jayad. H. Foundation of material science and engineering, 4tg Ed. McGraw-Hill. Pp. 509. ISBN 0-07-295358-6. |
[92] | Harper, C. A.; Petrie, E. M. Plastic materials and processes: A concise encyclopaedia, John Wiley and Sons, pp. 9, ISBN 978-0471-45920-0. |
[93] | V. C. Venkatesh, Machining of glass by impact processes, Journal of Mechanical Working Technology, 1983, 8, 247–260 http://dx.doi.org/10.1016/0378-3804(83)90042-6 |
[94] | D. E. Clark, C. G. Pantano, Jr., L. L. Hench, Corrosion of Glass, Books for Industry, 1979. |
[95] | A. Paul, Chemistry of Glasses, 2nd Edition, Chapman and Hall, London, New York, 1990, ISBN 0-412-27820-0. |
[96] | Guzzo, P. L.; Raslan, A. A.; DeMello, J. D. B.) Ultrasonic abrasion of quartz crystals. Wear, 2003; 255: 67-77. http://dx.doi.org/10.1016/S0043-1648(03)00094-2 |
[97] | Kuo, K. L. Experimental investigation of brittle material milling using rotary ultrasonic machining. Proceedings of the 35th International MATADOR Conference, Springer: London, 2007, 195-198. DOI: 10.1007/978-1-84628-988-0_43. |
[98] | Hasani, H., Tabatabaei., S. A. and Amiri, G. Grey relational analysis to determine the optimum process parameters for open end sprnning yarns. Journal of engineering fibers and fabrics 2012; 7 (2): 81-86. |
APA Style
Kanwal Jeet Singh, Inderpreet Singh Ahuja, Jatinder Kapoor. (2017). Mathematical Modeling for Material Removal and Optimization of Ultrasonic Drilling of Polycarbonate and Acrylic Glass for Surface Roughness by GRA Approach. International Journal of Mechanical Engineering and Applications, 5(3), 136-154. https://doi.org/10.11648/j.ijmea.20170503.12
ACS Style
Kanwal Jeet Singh; Inderpreet Singh Ahuja; Jatinder Kapoor. Mathematical Modeling for Material Removal and Optimization of Ultrasonic Drilling of Polycarbonate and Acrylic Glass for Surface Roughness by GRA Approach. Int. J. Mech. Eng. Appl. 2017, 5(3), 136-154. doi: 10.11648/j.ijmea.20170503.12
AMA Style
Kanwal Jeet Singh, Inderpreet Singh Ahuja, Jatinder Kapoor. Mathematical Modeling for Material Removal and Optimization of Ultrasonic Drilling of Polycarbonate and Acrylic Glass for Surface Roughness by GRA Approach. Int J Mech Eng Appl. 2017;5(3):136-154. doi: 10.11648/j.ijmea.20170503.12
@article{10.11648/j.ijmea.20170503.12, author = {Kanwal Jeet Singh and Inderpreet Singh Ahuja and Jatinder Kapoor}, title = {Mathematical Modeling for Material Removal and Optimization of Ultrasonic Drilling of Polycarbonate and Acrylic Glass for Surface Roughness by GRA Approach}, journal = {International Journal of Mechanical Engineering and Applications}, volume = {5}, number = {3}, pages = {136-154}, doi = {10.11648/j.ijmea.20170503.12}, url = {https://doi.org/10.11648/j.ijmea.20170503.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmea.20170503.12}, abstract = {Polycarbonate bullet proof and acrylic heat resistant glasses are used as the functional material in many industrial application. In automobile industries, banks and cabins, polycarbonate bullet proof glass has been used for security purpose. Similarly, acrylic heat resistant glass is used in furnace, microwaves, space craft and airplane applications. In this experimental research paper, Taguchi modal and Grey relational analysis are utilized for the ultrasonic drilling in these materials. For experimentation, input parameters are concentration, abrasive, grit size, power rating, hydrofluoric acid and tool materials. Output parameters are material removal rate, tool wear rate and surface roughness. In which, surface roughness is most significant output parameter, because it describe accuracy of the process. Through optimization analysis, Taguchi modal suggest that 40% abrasive concentration, mixture of (Alumina, Silicon carbide and Boron carbide) abrasive in 1:1:1, 600 grit of abrasive and 1.5% hydrofluoric acid gives best results for drilling in polycarbonate bullet proof glass material. Similarly, in acrylic heat resistant glass, mixture of Silicon carbide and Boron carbide (1:1), 600 grit abrasive and 1% hydrofluoric acid gives the optimum results. Concentration of slurry, abrasive grit size and hydrofluoric acid are the most significant parameters for ultrasonic drilling in both materials. Through Grey relational analysis the surface roughness is improved by 40% and 48% in polycarbonate (UL-752) and acrylic (BS-476) glass respectively.}, year = {2017} }
TY - JOUR T1 - Mathematical Modeling for Material Removal and Optimization of Ultrasonic Drilling of Polycarbonate and Acrylic Glass for Surface Roughness by GRA Approach AU - Kanwal Jeet Singh AU - Inderpreet Singh Ahuja AU - Jatinder Kapoor Y1 - 2017/05/17 PY - 2017 N1 - https://doi.org/10.11648/j.ijmea.20170503.12 DO - 10.11648/j.ijmea.20170503.12 T2 - International Journal of Mechanical Engineering and Applications JF - International Journal of Mechanical Engineering and Applications JO - International Journal of Mechanical Engineering and Applications SP - 136 EP - 154 PB - Science Publishing Group SN - 2330-0248 UR - https://doi.org/10.11648/j.ijmea.20170503.12 AB - Polycarbonate bullet proof and acrylic heat resistant glasses are used as the functional material in many industrial application. In automobile industries, banks and cabins, polycarbonate bullet proof glass has been used for security purpose. Similarly, acrylic heat resistant glass is used in furnace, microwaves, space craft and airplane applications. In this experimental research paper, Taguchi modal and Grey relational analysis are utilized for the ultrasonic drilling in these materials. For experimentation, input parameters are concentration, abrasive, grit size, power rating, hydrofluoric acid and tool materials. Output parameters are material removal rate, tool wear rate and surface roughness. In which, surface roughness is most significant output parameter, because it describe accuracy of the process. Through optimization analysis, Taguchi modal suggest that 40% abrasive concentration, mixture of (Alumina, Silicon carbide and Boron carbide) abrasive in 1:1:1, 600 grit of abrasive and 1.5% hydrofluoric acid gives best results for drilling in polycarbonate bullet proof glass material. Similarly, in acrylic heat resistant glass, mixture of Silicon carbide and Boron carbide (1:1), 600 grit abrasive and 1% hydrofluoric acid gives the optimum results. Concentration of slurry, abrasive grit size and hydrofluoric acid are the most significant parameters for ultrasonic drilling in both materials. Through Grey relational analysis the surface roughness is improved by 40% and 48% in polycarbonate (UL-752) and acrylic (BS-476) glass respectively. VL - 5 IS - 3 ER -