In fossil fuels depletion and climate change context, converting renewable energies into electricity is an asset for the electrification in West Africa rural areas. However, the massive production of electricity from renewable energies still comes up against a high cost per kWh of electricity produced. The optimization method choice is essential in the feasibility study of electrification projects with a view to achieve a cost per kWh of electricity that is bearable for both, the users and the project implementation structure. In this study, the optimization methods of genetic algorithm and that of the Homer software are compared in order to determine which is the best for the production cost optimization of an hybrid power plant at the Dori site, located in the Sahelian zone of Burkina Faso, in West Africa. The electricity production cost optimization on this site, by the two methods showed that the genetic algorithm method is the best indicated with kWh cost of $0.589 against a kWh cost of $0.620 for the Homer software. With both methods, the amount of CO2 equivalent avoided from being emitted into the atmosphere is the same, i.e. 161127 tons per year. The genetic algorithm optimization method is best suited for the study of rural electrification projects in the Sahelian zone of Burkina Faso.
Published in | International Journal of Energy and Power Engineering (Volume 11, Issue 2) |
DOI | 10.11648/j.ijepe.20221102.14 |
Page(s) | 47-55 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Hybrid Power Plant, Renewable Energies, Electricity, Optimization
[1] | ALKHALIL F. (2011). Supervision, Economie et Impact sur l’Environnement d’un Système d'Energie Electrique Associé à une Centrale Photovoltaïque. Thèse de Doctorat de l’École Nationale Supérieure d’Arts et Métiers, Lilles, France. |
[2] | BELANGER-GRAVEL Joséanne (2011). Analyse technico-économique d’un système hybride éolien-photovoltaïque en comparaison avec les systèmes photovoltaïque et éolien seuls. Mémoire de Maîtrise ès Sciences Appliquées, Ecole Polytechnique. |
[3] | BOUHARCHOUCHE A., BERKOUK E. M. and GHENNAM T. (2013). Control and Energy Management of a Grid Connected Hybrid Energy System PV-Wind with Battery Energy Storage for Residential Applications. Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies, EVER’13, 27-30, Monte-Carlo, Monaco. |
[4] | LI Chen Y., XIAO J. and WEI X. (2015). Optimal Configuration for Distributed Generations in Micro-grid System Considering Diesel as the Main Control Source. Journal of Energy and Power Engineering, 9, 493 – 499. |
[5] | KO M. J., KIM Y. S., CHUNG M. H. and JEON H. C. (2015). Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm. Energies, 8 (4), 2924-2949. |
[6] | Moussa Tissologo, Seydou Ouedraogo and Fréderic Ouattara (2021). Genetic algorithms approach for optimization of hybrid power plant sizing in sahelian zone: case study in Burkina Faso. Int. J. Adv. Res. 8 (11), 415-428. DOI: 10.21474/IJAR01/12023. |
[7] | Institut Géographique du Burkina (2021). Carte de la région du Sahel. Gouvernement du Burkina Faso, Ouagadougou. www.igb.bf. |
[8] | Institut National de la Statistique et de Démographie (2020). Recensement général de la population et de l’habitat. Rapport national, Gouvernement du Burkina Faso, Ouagadougou. |
[9] | Ministère des ressources animales (2017). Les statistiques du secteur de l’élevage au Burkina Faso. Ouagadougou, Burkina Faso. |
[10] | Seydou Ouedraogo, Ayité Sénah Akoda Ajavon, Mawugno Koffi Kodjo and Adekunlé Akim Salami (2018). Optimality sizing of hybrid electrical power plant composed of photovoltaic generator, wind generator and biogas generator. Res. J. Engineering Sci., 7 (11), 20-29. |
[11] | Spyridon Achinas, Vasileios Achinas, Gerrit Jan Willem Euverink (2017). A Technological Overview of Biogas Production from Biowaste. Engineering, 3 (3), 299-307. https://doi.org/10.1016/J.ENG.2017.03.002. |
[12] | Michel Torrijos (2016). State of Development of Biogas Production in Europe. Procedia Environmental Sciences; 35, 881-889. https://doi.org/10.1016/j.proenv.2016.07.043. |
[13] | Weiland P. (2013). Production de biogaz par les exploitations agricoles en Allemagne. Sciences Eaux & Territoires, 3 (12), 14-23. |
[14] | Ansoumane Sakouvogui, Younoussa Moussa Balde, Mamadou Foula Barry, Cellou KANTE, etMamby KEITA (2018). Évaluation du potentiel en biogaz de la bouse de vache, de la fiente de pouleet en codigestion à Mamou, République de Guinée. Afrique SCIENCE, 14 (5), 147–157. |
[15] | Dinh Duc Nguyen, Byong-Hun Jeon, Jae Hoon Jeung, Eldon R. Rene, J. Rajesh Banu, Balasubramani Ravindran et al. (2019). Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresource Technology, 280, 269-276. https://doi.org/10.1016/j.biortech.2019.02.033. |
[16] |
Levasseur P., Aubert P., Berger S., Charpiot A., Damiano A., Meier V., Quideau, P. (2011). Développement d’un calculateur pour déterminer l’intérêt technico-économique de la méthanisation dans les différents systèmes de productions animales: Méthasim. Innovations agronomiques, INRAE, 17 (17), 241-253. |
[17] | Beline F., Girault R., Peu P., Tremier A., Teglia C. et Dabert P. (2012). Enjeux et perspectives pour le développement de la méthanisation agricole en France. Sciences Eaux & Territoires, 2 (7), 34-43. |
[18] | Gao Ruiling, Cheng Shikun, Li Zifu (2017). Research progress of siloxane removal from biogas. Int J Agric & BiolEng; 10 (1), 30–39. DOI: 10.3965/j.ijabe.20171001.3043. |
[19] | Diniz, P., da Costa L., da Silveira J., Barroso G. & Barcellos W. (2021). Performance evaluation of controllers applied to power generator set operating with waste water biogas. Electr Eng, 103, 753–768. https://doi.org/10.1007/s00202-020-01113-4. |
[20] | Jordehi AR. (2016). Parameter estimation of solar photovoltaic (PV) cells: A review. Renew Sustain Energy Rev, 61, 354–71. |
[21] | Lo Brano V, Orioli A, Ciulla G. (2012). On the experimental validation of an improved five parameter model for silicon photovoltaic modules. Sol Energy Mat Sol C, 105, 27–39. |
[22] | Mares, O., Paulescu, M., Badescu, V. (2015). A simple but accurate procedure for solving the five parameter model. Energy Convers. Manage, 105, 139–48. |
[23] | Boutana N, Mellit A, Haddada S, Rabhi A, Massi Pavan A. (2017). An explicit I-V model for photovoltaic module technologies. Energy Convers Manage, 138, 400-12. |
[24] | Khan F, Baek SH, Park Y, Kim JH. (2013). Extraction of diode parameters of silicon solar cells under high illumination conditions. Energy Converse Manage, 76, 421–9. |
[25] | Ruschel C. S., Gasparin F. P., Costa E. R., Krenzinger A. (2016). Assessment of PV modules shunt resistance dependence on solar irradiance, Sol Energy, 133, 35-43. |
[26] | Bouharchouche A., Bouabdallah A., Berkouk E. M., Diaf S. et Belmili H. (2014). Conception et réalisation d’un logiciel de dimensionnement d’un système d’énergie hybride éolien-photovoltaïque. Revue des Energies Renouvelables, 17 (3), 359–376. |
[27] | OLATOMIWA L. G., MEKHILEF S. and HUDA A. S. N. (2014). Optimal Sizing of Hybrid Energy System for a Remote Telecom Tower: A Case Study in Nigeria. IEEE Conference on Energy Conversion (CENCON), 243-247, 13-14 October 2014. |
[28] | Site internet du logiciel Homer, http://www.homerenergy.com,"logiciel HOMER", Consulté le 12 février 2022. |
[29] | KOUAM A. et TCHUEN G. (2015). Optimisation d’un système hybride de production d’énergie pour site isolé: cas de la ville de Ngaoundéré. Revue des Energies Renouvelables, 18 (4), 529–538. |
[30] | Ministère des mines et de l’énergie du Burkina Faso (2013). Politique Sectorielle de l’Energie 2014 – 2025. Normes et rapport, Gouvernement du Burkina Faso, Ouagadougou. |
APA Style
Moussa Tissologo, Seydou Ouedraogo, Ratousiri Arnaud Abdel Aziz Valea, Fréderic Ouattara, Ayité Senah Akoda Ajavon. (2022). Comparison of Two Methods for Optimizing the Electricity Production Cost for Rural Electrification: Case of PV/Biogas Generator Hybrid Power Plant in Burkina Faso. International Journal of Energy and Power Engineering, 11(2), 47-55. https://doi.org/10.11648/j.ijepe.20221102.14
ACS Style
Moussa Tissologo; Seydou Ouedraogo; Ratousiri Arnaud Abdel Aziz Valea; Fréderic Ouattara; Ayité Senah Akoda Ajavon. Comparison of Two Methods for Optimizing the Electricity Production Cost for Rural Electrification: Case of PV/Biogas Generator Hybrid Power Plant in Burkina Faso. Int. J. Energy Power Eng. 2022, 11(2), 47-55. doi: 10.11648/j.ijepe.20221102.14
AMA Style
Moussa Tissologo, Seydou Ouedraogo, Ratousiri Arnaud Abdel Aziz Valea, Fréderic Ouattara, Ayité Senah Akoda Ajavon. Comparison of Two Methods for Optimizing the Electricity Production Cost for Rural Electrification: Case of PV/Biogas Generator Hybrid Power Plant in Burkina Faso. Int J Energy Power Eng. 2022;11(2):47-55. doi: 10.11648/j.ijepe.20221102.14
@article{10.11648/j.ijepe.20221102.14, author = {Moussa Tissologo and Seydou Ouedraogo and Ratousiri Arnaud Abdel Aziz Valea and Fréderic Ouattara and Ayité Senah Akoda Ajavon}, title = {Comparison of Two Methods for Optimizing the Electricity Production Cost for Rural Electrification: Case of PV/Biogas Generator Hybrid Power Plant in Burkina Faso}, journal = {International Journal of Energy and Power Engineering}, volume = {11}, number = {2}, pages = {47-55}, doi = {10.11648/j.ijepe.20221102.14}, url = {https://doi.org/10.11648/j.ijepe.20221102.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijepe.20221102.14}, abstract = {In fossil fuels depletion and climate change context, converting renewable energies into electricity is an asset for the electrification in West Africa rural areas. However, the massive production of electricity from renewable energies still comes up against a high cost per kWh of electricity produced. The optimization method choice is essential in the feasibility study of electrification projects with a view to achieve a cost per kWh of electricity that is bearable for both, the users and the project implementation structure. In this study, the optimization methods of genetic algorithm and that of the Homer software are compared in order to determine which is the best for the production cost optimization of an hybrid power plant at the Dori site, located in the Sahelian zone of Burkina Faso, in West Africa. The electricity production cost optimization on this site, by the two methods showed that the genetic algorithm method is the best indicated with kWh cost of $0.589 against a kWh cost of $0.620 for the Homer software. With both methods, the amount of CO2 equivalent avoided from being emitted into the atmosphere is the same, i.e. 161127 tons per year. The genetic algorithm optimization method is best suited for the study of rural electrification projects in the Sahelian zone of Burkina Faso.}, year = {2022} }
TY - JOUR T1 - Comparison of Two Methods for Optimizing the Electricity Production Cost for Rural Electrification: Case of PV/Biogas Generator Hybrid Power Plant in Burkina Faso AU - Moussa Tissologo AU - Seydou Ouedraogo AU - Ratousiri Arnaud Abdel Aziz Valea AU - Fréderic Ouattara AU - Ayité Senah Akoda Ajavon Y1 - 2022/04/25 PY - 2022 N1 - https://doi.org/10.11648/j.ijepe.20221102.14 DO - 10.11648/j.ijepe.20221102.14 T2 - International Journal of Energy and Power Engineering JF - International Journal of Energy and Power Engineering JO - International Journal of Energy and Power Engineering SP - 47 EP - 55 PB - Science Publishing Group SN - 2326-960X UR - https://doi.org/10.11648/j.ijepe.20221102.14 AB - In fossil fuels depletion and climate change context, converting renewable energies into electricity is an asset for the electrification in West Africa rural areas. However, the massive production of electricity from renewable energies still comes up against a high cost per kWh of electricity produced. The optimization method choice is essential in the feasibility study of electrification projects with a view to achieve a cost per kWh of electricity that is bearable for both, the users and the project implementation structure. In this study, the optimization methods of genetic algorithm and that of the Homer software are compared in order to determine which is the best for the production cost optimization of an hybrid power plant at the Dori site, located in the Sahelian zone of Burkina Faso, in West Africa. The electricity production cost optimization on this site, by the two methods showed that the genetic algorithm method is the best indicated with kWh cost of $0.589 against a kWh cost of $0.620 for the Homer software. With both methods, the amount of CO2 equivalent avoided from being emitted into the atmosphere is the same, i.e. 161127 tons per year. The genetic algorithm optimization method is best suited for the study of rural electrification projects in the Sahelian zone of Burkina Faso. VL - 11 IS - 2 ER -