In Kuwait natural resources of fresh water are very limited. Kuwait is situated in an arid coastal region characterized by high temperatures, low humidity, sparse precipitation rates, and high evaporation and evapotranspiration rates with no rivers or lakes. Therefore, Kuwait has always relied on other sources to secure freshwater to meet its growing demands. The aim of this study was to design a conceptual system to provide a sustainable water source at a feasible cost. The conceptual design system was developed to address the problem of water scarcity and sustainability in general, and specifically to represent the Kuwaiti water quality and quantity limitation problem.The conceptual design system consists primarily of utilizing brackish groundwater in conjunction with treated wastewater augmentation and a reverse osmosis unit for plant production, the simulation was chosen to represent the quasi-Kuwaiti environment data.The study considered two types of simulation models for the conceptual design system approach. These models are the lump model approach and the areal distribution model approach. The lump model approach was carried out through the construction of a simplified model approach utilizing the Visual Basic model. On the other hand, the areal distribution model approach was carried out through the utilization of the Visual MODFLOW and MT3D simulation model approach. This paper present a part of the study that directed to test the physical and climatic performance, and the durability of the conceptual design system, Visual basic, lump, model simulation approach was simulated for different ranges of hydrologic, hydrogeologic, and climatic parameters to determine the total power and treated wastewater consumption. From the performance test results, the increase in evapotranspiration had the highest increase effect on the system total power consumption per unit area and the highest increase effect on the treated wastewater consumption per unit area. On the other hand, the increase in the aquifer porosity had the least increase effect on both the total power consumption and the treated wastewater consumption by the system. In contrast, the hydraulic conductivity increase had no direct effect on either the total power consumption or on the treated wastewater consumption per unit area.
Published in | International Journal of Environmental Monitoring and Analysis (Volume 1, Issue 5) |
DOI | 10.11648/j.ijema.20130105.21 |
Page(s) | 258-272 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Groundwater, Groundwater Model, Treated Wastewater Injection, Reverse Osmosis, Evapotranspiration, Porosity, Hydraulic Conductivity, Water Head Table, Groundwater Salt Concentration
[1] | Abdel-Jawad, M., Al-Shammari, S., and Al-Sulaimi, J. 2002. Non-ConventionalTreated Municipal Wastewater for Reverse Osmosis. Desalination Vol.142, pp. 11- 18. |
[2] | Allen, R. G., M. E. Jensen, J. L. Wright, and R. D. Burman. 1989. Operational estimates of evapotranspiration. Agron. J., 81:650-662. |
[3] | Al-Rashed, M., M. N. Al-Senafy, M. N. Viswanathan, and A. Sumait. 1998.Groundwater Utilization in Kuwait:Some Problems and Solutions. Water Resource Development, Vol 14, N0. 1, pp. 91-105. |
[4] | Al-Wazzan, Y., M. Safae, S. Ebrahim, N. Burney, and A. Mesri. 2002. Desalting of Surface Water Using Spiral-Wound Reverse Osmosis (RO) System: Technical and Economic Assessment. Desalination Vol. 142, pp. 21-28. |
[5] | MEW. 2000. Water Statistical Year Book. Ministry of Electricity and Water, Kuwait, 2000. |
[6] | MEW. 1989. Statistical Year Book, Water, ed. 16B, Ministry of Electricity and Water, Kuwait. |
[7] | Omar, S. A., I. El-Bagouri, Y. Anwar, F. Khalaf, M. Hashash, and A. Nassef. 1988. Measures to Control Mobile Sand in Kuwait. Vol. 1. Environmental Assessment and Control Measures, EES-78, Kuwait Institute for scientific research, Report No. KISR2760, Kuwait. |
[8] | Tanner, C. B. 1967. Measurement of evapotranspiration. 534-574. In Irrigation of Agricultural lands. Mono No. 11, Am. Soc. Agron., Madison, Wis. |
[9] | Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geograph. Rev., 38, 55. |
[10] | Urila, L. 2002. Optimizing the Efficiency of Reverse Osmosis Seawater Desalination, http://urila.tripod.com/Seawater.htm, May (2002). |
APA Style
AlAli, Emad Hussain. (2013). Groundwater Simulation System Study on Physical and Climatic properties on Kuwait Group Aquifer. International Journal of Environmental Monitoring and Analysis, 1(5), 258-272. https://doi.org/10.11648/j.ijema.20130105.21
ACS Style
AlAli; Emad Hussain. Groundwater Simulation System Study on Physical and Climatic properties on Kuwait Group Aquifer. Int. J. Environ. Monit. Anal. 2013, 1(5), 258-272. doi: 10.11648/j.ijema.20130105.21
AMA Style
AlAli, Emad Hussain. Groundwater Simulation System Study on Physical and Climatic properties on Kuwait Group Aquifer. Int J Environ Monit Anal. 2013;1(5):258-272. doi: 10.11648/j.ijema.20130105.21
@article{10.11648/j.ijema.20130105.21, author = {AlAli and Emad Hussain}, title = {Groundwater Simulation System Study on Physical and Climatic properties on Kuwait Group Aquifer}, journal = {International Journal of Environmental Monitoring and Analysis}, volume = {1}, number = {5}, pages = {258-272}, doi = {10.11648/j.ijema.20130105.21}, url = {https://doi.org/10.11648/j.ijema.20130105.21}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijema.20130105.21}, abstract = {In Kuwait natural resources of fresh water are very limited. Kuwait is situated in an arid coastal region characterized by high temperatures, low humidity, sparse precipitation rates, and high evaporation and evapotranspiration rates with no rivers or lakes. Therefore, Kuwait has always relied on other sources to secure freshwater to meet its growing demands. The aim of this study was to design a conceptual system to provide a sustainable water source at a feasible cost. The conceptual design system was developed to address the problem of water scarcity and sustainability in general, and specifically to represent the Kuwaiti water quality and quantity limitation problem.The conceptual design system consists primarily of utilizing brackish groundwater in conjunction with treated wastewater augmentation and a reverse osmosis unit for plant production, the simulation was chosen to represent the quasi-Kuwaiti environment data.The study considered two types of simulation models for the conceptual design system approach. These models are the lump model approach and the areal distribution model approach. The lump model approach was carried out through the construction of a simplified model approach utilizing the Visual Basic model. On the other hand, the areal distribution model approach was carried out through the utilization of the Visual MODFLOW and MT3D simulation model approach. This paper present a part of the study that directed to test the physical and climatic performance, and the durability of the conceptual design system, Visual basic, lump, model simulation approach was simulated for different ranges of hydrologic, hydrogeologic, and climatic parameters to determine the total power and treated wastewater consumption. From the performance test results, the increase in evapotranspiration had the highest increase effect on the system total power consumption per unit area and the highest increase effect on the treated wastewater consumption per unit area. On the other hand, the increase in the aquifer porosity had the least increase effect on both the total power consumption and the treated wastewater consumption by the system. In contrast, the hydraulic conductivity increase had no direct effect on either the total power consumption or on the treated wastewater consumption per unit area.}, year = {2013} }
TY - JOUR T1 - Groundwater Simulation System Study on Physical and Climatic properties on Kuwait Group Aquifer AU - AlAli AU - Emad Hussain Y1 - 2013/10/30 PY - 2013 N1 - https://doi.org/10.11648/j.ijema.20130105.21 DO - 10.11648/j.ijema.20130105.21 T2 - International Journal of Environmental Monitoring and Analysis JF - International Journal of Environmental Monitoring and Analysis JO - International Journal of Environmental Monitoring and Analysis SP - 258 EP - 272 PB - Science Publishing Group SN - 2328-7667 UR - https://doi.org/10.11648/j.ijema.20130105.21 AB - In Kuwait natural resources of fresh water are very limited. Kuwait is situated in an arid coastal region characterized by high temperatures, low humidity, sparse precipitation rates, and high evaporation and evapotranspiration rates with no rivers or lakes. Therefore, Kuwait has always relied on other sources to secure freshwater to meet its growing demands. The aim of this study was to design a conceptual system to provide a sustainable water source at a feasible cost. The conceptual design system was developed to address the problem of water scarcity and sustainability in general, and specifically to represent the Kuwaiti water quality and quantity limitation problem.The conceptual design system consists primarily of utilizing brackish groundwater in conjunction with treated wastewater augmentation and a reverse osmosis unit for plant production, the simulation was chosen to represent the quasi-Kuwaiti environment data.The study considered two types of simulation models for the conceptual design system approach. These models are the lump model approach and the areal distribution model approach. The lump model approach was carried out through the construction of a simplified model approach utilizing the Visual Basic model. On the other hand, the areal distribution model approach was carried out through the utilization of the Visual MODFLOW and MT3D simulation model approach. This paper present a part of the study that directed to test the physical and climatic performance, and the durability of the conceptual design system, Visual basic, lump, model simulation approach was simulated for different ranges of hydrologic, hydrogeologic, and climatic parameters to determine the total power and treated wastewater consumption. From the performance test results, the increase in evapotranspiration had the highest increase effect on the system total power consumption per unit area and the highest increase effect on the treated wastewater consumption per unit area. On the other hand, the increase in the aquifer porosity had the least increase effect on both the total power consumption and the treated wastewater consumption by the system. In contrast, the hydraulic conductivity increase had no direct effect on either the total power consumption or on the treated wastewater consumption per unit area. VL - 1 IS - 5 ER -