In this study, we have successfully use quantitative structure activity relationship (QSAR) to determine the anti-proliferative activity of thirteen 5-arylidenes and derivatives using Density Functional Theory (DFT) method. Three models from the quantum molecular descriptors: energy of the lowest unoccupied molecular orbital; ELUMO the C-N distance; d(C-N), the C=O vibrational frequency; ѵ(C=O) were used on two representative tumor cell lines: NCI -H727; lung carcinoma and MDA-MB 231; breast carcinoma. The Density Functional Theory method of quantum chemistry was applied to the B3LYP / 6-31G (d) calculation level, to obtain the molecular descriptors. The following statistical indicators and their values were used on the models: regression coefficient of determination (0.926 to 0.954), adjusted coefficient of determination (0.882 to 0.927), standard deviation S (0.052 to 0.147), Fischer test; F (88.221 to 145.448), correlation coefficient of the cross validation (0.926 and 0.954) and difference approaching 0.000. The statistical characteristics of the established quantitative structure activity relationship (QSAR) models satisfy the criteria of acceptance and external validation, thereby confirming their good performance. In addition, each model is a function of the three descriptors mentioned above. The three models show that the C-N distance; d(C-N) and the energy of the lowest unoccupied molecular orbital; ELUMO are the greatest descriptors in the prediction of the anti-proliferative activity of the studied molecules and could be used for the synthesis of new anti-proliferative molecules.
Published in | International Journal of Computational and Theoretical Chemistry (Volume 10, Issue 1) |
DOI | 10.11648/j.ijctc.20221001.11 |
Page(s) | 1-8 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
5-Arylidene Rhodanine, Anti-proliferative Activity, Quantitative Structure Activity Relationship, Density Functional Theory Method, Molecular Descriptors
[1] | R. B. Lesyk and B. S. Zimenkovsky, 1-4-thiazolidones: history, centenary, current situation and perspectives of modern organic and medicinal chemistry Curr. Org. Chem., 2004, 8, 1547–1577. |
[2] | A. K. Jain, A Vaidya. V. Ravichandran, S, K. Kasshaw, R. K, Agrawal, Recent developments and biological activities of thiazolidinone derivatives, Bioorg. Med. Chem., 2012, 20, 3378-3395. |
[3] | S. Kaur Manjal et al. “Synthetic and medicinal perspective of thiazolidinones: A review,” Bioorg. Chem., 2017, 75, 406–423. |
[4] | Bulic, B.; Pickhardt, M.; Khlistunova, I.; Biernat, J.; Mandelkow, E. M.; Mandelkow, E.; Waldmann, H., Angew, Rhodanine-based tau aggregation inhibitors in cell models of tauopathy. Chem., 2007, 119, 9375; Angew. Chem. Int. Ed., 2007, 46, 9215. |
[5] | Alegaon, S. G.; Alagawadi, K. R.; Sonkusare, P. V.; Chaudhary, S. M.; Dadwe, D. H.; Shah, A. S. Synthesis, characterization and antimicrobial activity of azole-pyrazolidin-3-one derivatives, Bioorg. Med. Chem. Lett., 2012, 22 (5), 1917. |
[6] | Radi, M.; Botta, L.; Casaluce, G.; Bernardini, M.; Botta, M. J. Comb. Chem. 2010, 12 (1), 200. |
[7] | Benson. S. W. and Buss. J. H., Additivity rules for the estimation of molecular properties. Thermodynamic properties, J. Chem., Phys., 1958, 29, 546-572. |
[8] | Kumar, V.; Khandare, D. G.; Chatterjee, A.; Banerjee, A simple and effective mechanochemical route for the synthesis of 2-aryl benzothiazoles and substituted benzimidazoles M. Tetrahedron Lett., 2013, 54 (40), 5505. |
[9] | Ravi S., Kishore K. C., Sathees C. R., E. J. Med. Chem., 2010, 45, 2748-2752. |
[10] | Rao, Reddy, T. N.; Ravinder, M.; Bagul, P.; Ravikanti, K.; Bagul, C.; Nanubolu, J. B.; Srinivas, K.; Banerjee, S. K.; Synthesis and biological evaluation of new epalrestat analogues as aldose reductase (ARI) inhibitors. V. J. Eur. J. Med. Chem., 2014, 71, 53. |
[11] | Szafran, C. E.; Glase, S. A.; Purchase, T. S., Pattent N°: WO 0076988 A1, Décembre, 2000. |
[12] | O. Bozdag-Dundar, E. J. Verspohl, R. M. Das-Evcimenn, K. Kaup, Bauer, M. Sarikaya, B. Evi, R. Ertan., Bioorg. Med. Chem., 2008, 16, 6747–6751. |
[13] | Mishra, R.; Bulic, B.; Sellin, D.; Jha, S.; Waldmann, W.; Herbertand, R., Angew. Chem. Int. Ed., 2008, 47, 4679. |
[14] | Wacothon Karime Coulibaly, Thèse de Doctorat, 2012, N° 4549, Page 1-236. |
[15] | Chhabria, M. T., Mahajan, B. M. and Brahmkshatriya, P. S. QSAR Study of a Series of Acyl Coenzyme A (CoA): Cholesterol Acyltransferase Inhibitors Using Genetic Function Approximation. Med. Chem. Res., 2011, 20, 1573-1580. |
[16] | Buha, V. M., Rana, D. N., Chhabria, M. T., Chikhalia, K. H., Mahajan, B. M., Brahmkshatriya, P. S. and Shah, N. K. Synthesis, Biological Evaluation and QSAR Study of a Series of Substituted Quinazolines as Antimicrobial Agents. Med. Chem. Res., 2013, 22, 4096-4109. |
[17] | Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatics, 2010, 29, 476-488. |
[18] | T. I. Oprea, “Chemoinformatics in Drug Discovery” Ed. WILEY-VCH Verlag. Allemagne, 2005. |
[19] | E. A. Rekka; P. N. Kourounakis “Chemistry and Molecular Aspects of Drug Design and Action” Ed. Taylor & Francis Group, LLC. Etats Unies, 2008. |
[20] | M. V. Diudea, QSPR/QSAR Studies for Molecular Descriptors; Nova Science: Huntingdon, New York, USA, 2000. |
[21] | E. X. Esposito, A. J. Hopfinger, J. D. Madura, Methods in Molecular Biology, 2004, 275, 131-213. |
[22] | K. N. N’guessan, M. G-R. Koné, K. Bamba, W. P. Ouattara and N. Ziao, “Quantitative Structure Anti-Cancer Activity Relationship (QSAR) of a Series of Ruthenium Complex Azopyridine by the Density Functional Theory (DFT) Method,” Comput. Mol. Biosci., 2017, 07, 19–31. |
[23] | J. S. N’dri, A. L. C. Kablan, B. ouattara, M. G-R. Koné, L. ouattara, C. G. Kodjo and N. Ziao, “QSAR Studies of the Antifungal Activities of α -Diaminophosphonates Derived from Dapsone by DFT Method,” 2019, 7, 1–7. |
[24] | W. Yang Lee and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785-789. |
[25] | A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648-5652. |
[26] | Y. Traoré, M. G- Richard Koné, O. Ouattara, and N. Ziao, “Qsar Approach to Estimating the Analgesic Activity of a Series of Tri-Substituted Pyrimidine Derivatives,” SDRP J. Comput. Chem. Mol. Model., 2018, 3, 1–10. |
[27] | J. S. N’dri, M. G-R. Koné, A. L. C. Kablan, S. T. Affi, C. G. Kodjo, O. Ouattara, L. Ouattara and N. Ziao “Combining of DFT and QSAR Results to Predict the Antibacterial Activity of a Series of Azetidinones derived from Dapsone as Inhibitors of Bacillus Subtilis and Pseudomonas Aeruginosa,” SDRP J. Comput. Chem. Mol. Model., 2018, 2, 1–8. |
[28] | Gaussian 09, Revision A. 02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, Gaussian, Inc., Wallingford CT, 2009. |
[29] | J. Kapp, M. Remko, P. v. R. Schleyer, H2XO and (CH3)2XO Compounds (X= C, Si, Ge, Sn, Pb): Double bonds vs carbene-like structures can the metal compounds exist at all, J. Amer. Chem. Soci., 1996, 118, 5745-5751. |
[30] | B. G. Johnson, P. M. Gill, J. A. Pople, The performance of a family of density functional methods, J. Chem. Phys., 1993, 98, 5612-5626. |
[31] | Microsoft ® Excel ® 2013 (15.0.4420.1017) MSO (15.0.4420.1017) 64 Bits (2013) Partie de Microsoft Office Professionnel Plus. |
[32] | XLSTAT Version 2014. 5. 03 Copyright Addinsoft 1995-2014 (2014) XLSTAT and Addinsoft are Registered Trademarks of Addinsoft. https://www.xlstat.com. |
[33] | Vessereau A., Méthodes statistiques en biologie et en agronomie (Lavoisier, Tec & Doc, Paris, 1988). |
[34] | G. W. Snedecor, W. G. Cochran, Statistical Methods; Oxford and IBH: New Delhi, India; 1967, 381. |
[35] | O. Ouattara, M. G-R Koné, T. S. Affi, K. Bamba, Y. Traore, and N. Ziao, “Contribution to The Molecular Lipophilicity Scale By Qspr Models Of Lipophilicity Prediction,” 2018, 8, 55–61. |
[36] | Y. H. Kpidi, O. B. Yapo, M. G-R. Koné, G. A. Gadji, A. E. J. E. Y. Gnagne, J. S. N’dri, and N Ziao, “Monitoring and Modeling of Chlorophyll-a Dynamics in a Eutrophic Lake: M’koa Lake (Jacqueville, Ivory Coast),” Am. J. Environ. Prot., 2018, 6, 1–9. |
[37] | J S. N’dri, M. G-R. Koné, C. G. Kodjo, S. T. Affi, A. L. C. Kablan, Z. A. Ouattara and N. Ziao, “Quantitative Structure antifungal Activity Relationship (QSAR) study of a series of Schiff bases derivatives from4- aminobenzenesulphonamide by DFT method,” IOSR J. Pharm., 2017, 7, 27–33. |
[38] | L. Eriksson, J. Jaworska, A. Worth, M. T. D. Cronin, R. M. Mc Dowell, P. Gramatica, Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs, Environmental Health Perspectives, 2003, 111, 1361-1375. |
[39] | C. Hansch, T. Fujita ρ – σ – π, analysis: method for correlation of biological activity and chemical structure, J. Am. Chem. Soc., 1964, 86, 1616-1626. |
APA Style
Coulibaly Wacothon Karime, Affi Sopi Thomas, James Titah, Mamadou Guy-Richard Koné, Affoué Estelle Brigitte Yao, et al. (2022). Anti-proliferative Activity Study on 5-Arylidene Rhodanine Derivatives Using Density Functional Theory (DFT) and Quantitative Structure Activity Relationship (QSAR). International Journal of Computational and Theoretical Chemistry, 10(1), 1-8. https://doi.org/10.11648/j.ijctc.20221001.11
ACS Style
Coulibaly Wacothon Karime; Affi Sopi Thomas; James Titah; Mamadou Guy-Richard Koné; Affoué Estelle Brigitte Yao, et al. Anti-proliferative Activity Study on 5-Arylidene Rhodanine Derivatives Using Density Functional Theory (DFT) and Quantitative Structure Activity Relationship (QSAR). Int. J. Comput. Theor. Chem. 2022, 10(1), 1-8. doi: 10.11648/j.ijctc.20221001.11
AMA Style
Coulibaly Wacothon Karime, Affi Sopi Thomas, James Titah, Mamadou Guy-Richard Koné, Affoué Estelle Brigitte Yao, et al. Anti-proliferative Activity Study on 5-Arylidene Rhodanine Derivatives Using Density Functional Theory (DFT) and Quantitative Structure Activity Relationship (QSAR). Int J Comput Theor Chem. 2022;10(1):1-8. doi: 10.11648/j.ijctc.20221001.11
@article{10.11648/j.ijctc.20221001.11, author = {Coulibaly Wacothon Karime and Affi Sopi Thomas and James Titah and Mamadou Guy-Richard Koné and Affoué Estelle Brigitte Yao and Camille Déliko Dago and Christelle N’ta Ambeu and Jean-Pierre Bazureau and Josh Daniel McLoud and Benié Anoubilé and Nahossé Ziao}, title = {Anti-proliferative Activity Study on 5-Arylidene Rhodanine Derivatives Using Density Functional Theory (DFT) and Quantitative Structure Activity Relationship (QSAR)}, journal = {International Journal of Computational and Theoretical Chemistry}, volume = {10}, number = {1}, pages = {1-8}, doi = {10.11648/j.ijctc.20221001.11}, url = {https://doi.org/10.11648/j.ijctc.20221001.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20221001.11}, abstract = {In this study, we have successfully use quantitative structure activity relationship (QSAR) to determine the anti-proliferative activity of thirteen 5-arylidenes and derivatives using Density Functional Theory (DFT) method. Three models from the quantum molecular descriptors: energy of the lowest unoccupied molecular orbital; ELUMO the C-N distance; d(C-N), the C=O vibrational frequency; ѵ(C=O) were used on two representative tumor cell lines: NCI -H727; lung carcinoma and MDA-MB 231; breast carcinoma. The Density Functional Theory method of quantum chemistry was applied to the B3LYP / 6-31G (d) calculation level, to obtain the molecular descriptors. The following statistical indicators and their values were used on the models: regression coefficient of determination (0.926 to 0.954), adjusted coefficient of determination (0.882 to 0.927), standard deviation S (0.052 to 0.147), Fischer test; F (88.221 to 145.448), correlation coefficient of the cross validation (0.926 and 0.954) and difference approaching 0.000. The statistical characteristics of the established quantitative structure activity relationship (QSAR) models satisfy the criteria of acceptance and external validation, thereby confirming their good performance. In addition, each model is a function of the three descriptors mentioned above. The three models show that the C-N distance; d(C-N) and the energy of the lowest unoccupied molecular orbital; ELUMO are the greatest descriptors in the prediction of the anti-proliferative activity of the studied molecules and could be used for the synthesis of new anti-proliferative molecules.}, year = {2022} }
TY - JOUR T1 - Anti-proliferative Activity Study on 5-Arylidene Rhodanine Derivatives Using Density Functional Theory (DFT) and Quantitative Structure Activity Relationship (QSAR) AU - Coulibaly Wacothon Karime AU - Affi Sopi Thomas AU - James Titah AU - Mamadou Guy-Richard Koné AU - Affoué Estelle Brigitte Yao AU - Camille Déliko Dago AU - Christelle N’ta Ambeu AU - Jean-Pierre Bazureau AU - Josh Daniel McLoud AU - Benié Anoubilé AU - Nahossé Ziao Y1 - 2022/01/21 PY - 2022 N1 - https://doi.org/10.11648/j.ijctc.20221001.11 DO - 10.11648/j.ijctc.20221001.11 T2 - International Journal of Computational and Theoretical Chemistry JF - International Journal of Computational and Theoretical Chemistry JO - International Journal of Computational and Theoretical Chemistry SP - 1 EP - 8 PB - Science Publishing Group SN - 2376-7308 UR - https://doi.org/10.11648/j.ijctc.20221001.11 AB - In this study, we have successfully use quantitative structure activity relationship (QSAR) to determine the anti-proliferative activity of thirteen 5-arylidenes and derivatives using Density Functional Theory (DFT) method. Three models from the quantum molecular descriptors: energy of the lowest unoccupied molecular orbital; ELUMO the C-N distance; d(C-N), the C=O vibrational frequency; ѵ(C=O) were used on two representative tumor cell lines: NCI -H727; lung carcinoma and MDA-MB 231; breast carcinoma. The Density Functional Theory method of quantum chemistry was applied to the B3LYP / 6-31G (d) calculation level, to obtain the molecular descriptors. The following statistical indicators and their values were used on the models: regression coefficient of determination (0.926 to 0.954), adjusted coefficient of determination (0.882 to 0.927), standard deviation S (0.052 to 0.147), Fischer test; F (88.221 to 145.448), correlation coefficient of the cross validation (0.926 and 0.954) and difference approaching 0.000. The statistical characteristics of the established quantitative structure activity relationship (QSAR) models satisfy the criteria of acceptance and external validation, thereby confirming their good performance. In addition, each model is a function of the three descriptors mentioned above. The three models show that the C-N distance; d(C-N) and the energy of the lowest unoccupied molecular orbital; ELUMO are the greatest descriptors in the prediction of the anti-proliferative activity of the studied molecules and could be used for the synthesis of new anti-proliferative molecules. VL - 10 IS - 1 ER -