C=O vibrational bands of various aggregated formations of pure acetic acid in the Raman spectra have different values of the depolarization ratio. Ab initio calculations using the Gaussian 98 W program in the Hartree-Fock approximation with the basic set of Gaussian functions RHF 6-31G++(d, p) show that this is how it should be. Thus, the formation of aggregates from molecules leads not only to a change in the dipole moment of the molecules, but also to a change in the bond polarizability tensor. Calculations according to this program showed that one of the hydrogen atoms of CH3 group of acetonitrile can participate in the intermolecular hydrogen bond. This can lead to the formation of closed acetonitrile-acetic acid dimers. However, a comparison of the calculated and experimental data shows that in the case of acid-acetonitrile molecules, the H-bond is formed in the direction of the elongation –О-Н…N of acetonitrile molecules. The activity of one of the hydrogen atoms of the CH3 group of acetonitrile leads to the formation of closed dimeric aggregates in pure acetonitrile with a shift of the СN band of acetonitrile towards lower frequencies. The low-frequency asymmetry of СN acetonitrile band in the Raman spectra is associated with the presence of such aggregates in liquid acetonitrile.
Published in | American Journal of Physics and Applications (Volume 6, Issue 6) |
DOI | 10.11648/j.ajpa.20180606.15 |
Page(s) | 169-174 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Raman Spectra, Ab Initio Calculation, H-Bond, Aggregated Formations, Carboxylic Acids
[1] | J. Pimentel, O. Mac-Klelan. Hydrogen bond // M .: Mir, 1964. 462 S. |
[2] | F. H. Tukhvatullin, U. N. Tashkenbaev, A. Jumabaev, H. Hushvaktov, A. Absanov. Structure of molecular aggregates in liquids and their manifestation in spectra of raman scattering. Monograph, Germany, LAMBERT Academic publishing, 2015 year, P. -252. |
[3] | I. V. Gerasimov, A. I. Kulbida, K. G. Tokhadze, V. M. Schreiber // ZHPS. 1980. T.32. Issue 6, p. 1066. |
[4] | V. Krishnakumar, R. Mathammal, S. Muthunatesan // Spectrochimica Acta Part A 70. 2008. PP. 210–216. |
[5] | A. Olbert-Majkut, J. Ahokas, J. Lundell, M. Pettersson // J. Raman Spectrosc. 2011, Vol.42, PP.1670–1681. |
[6] | F. Wan, L. Du, W. Chen, P. Wang, J. Wang, H. Shi // Energies 2017. Vol.10, P. 967. |
[7] | L. Du, W. Chen, Z. Gu, J. Zou, F. Wan, P. Wang, C. Pan // IEEE International Conference on High Voltage Engineering and Application (ICHVE) 2016. 19-22 Sept. Chengdu, China. |
[8] | G. V. Gusakova, G. S. Denisov, A. L. Smolyansky \\ ZHPS. 1971, Vol.14, Vol.5, S.860-866. |
[9] | T. Nakabayashi, K. Kosugi, N. Nishi // J. Phys. Chem. A 1999, Vol.103, РР.8595-8603. |
[10] | D. R. Allan, S. J. Clark // Phys. Rev. Letters. 1999, V82, №17, P.3464-3467. |
[11] | F. Kh. Tukhvatullin, U. N. Tashkenbaev, A. Jumabaev, G. Murodov, Kh. Hushvaktov, A. Absanov // Journal Chem. Phys. 2003, No. 6, P.205-210. |
[12] | А. Jumabaev, U. N. Tashkenbaev, Kh. Hushvaktov, G. Muradov, А. А. Absanov, G. Sharifov, B. Amrullaeva // VII International Conference on Physical Electronics, IPEC-7. Tashkent. 2018. P.26. |
[13] | A. K. Atakhodzhaev, F. Tukhvatullin, G. Muradov et al. // Optics and Spectroscopy. 1996, T.80, No. 2, p. 208. |
[14] | F. Tukhvatullin, A. Jumabaev, U. N. Tashkenbaev, Kh. Hushvaktov, A. Absanov // O. ph. ph . d. 2004, Vol. 6, No. 3, pp. 195-202. |
[15] | U. N. Tashkenbaev // Uzb. Phys. Journ. 1998, No. 6, P. 60-65. |
[16] | J. Wu // Phys. Chem. Chem. Phys., 2014, Vol.16, PP.22458-22461. |
[17] | T. Nakabayashi, N. Nishi // J. Annual Review, 2001. P.61-62. |
[18] | T. Nakabayashi, N. Nishi // J. Annual Review, 2000. P.66-68. |
[19] | M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.3, Gaussian, Inc., Pittsburgh PA, (1998). |
[20] | L. M. Sverdlov, M. A. Kovner, E. P. Kraynov. Oscillatory spectra of polyatomic molecules // Izd. M.: “Science” 1970, P.560. |
[21] | P. Pulay, G. Fogarasi, G. Pongar, I. E. Boggs and A. Varga // J. Am. Chem. Soc. 1983, 105 (24), P.7037. |
[22] | M. A. Ablaeva, G. M. Zhidomirov et al. // Zhurn. Struct. Chemistry 1992, T.33 (5), P.44-54. |
[23] | B. P. Asthana, V. Deckert, M. K. Shukla, W. Kiefer // J. Chem. Phys. Letters. 2000; 326: 123-128. |
[24] | Doo-Sik Ahn and Sungyul Lee // Bull. Korean Chem. Soc. 2003; 24 (5): 545-546. |
APA Style
Khakim Khushvaktov, Abduvakhid Jumabaev, Valeriy Pogorelov, Ulugbek Tashkenbaev, Akhmad Absanov, et al. (2019). Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations. American Journal of Physics and Applications, 6(6), 169-174. https://doi.org/10.11648/j.ajpa.20180606.15
ACS Style
Khakim Khushvaktov; Abduvakhid Jumabaev; Valeriy Pogorelov; Ulugbek Tashkenbaev; Akhmad Absanov, et al. Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations. Am. J. Phys. Appl. 2019, 6(6), 169-174. doi: 10.11648/j.ajpa.20180606.15
@article{10.11648/j.ajpa.20180606.15, author = {Khakim Khushvaktov and Abduvakhid Jumabaev and Valeriy Pogorelov and Ulugbek Tashkenbaev and Akhmad Absanov and Gayrat Sharifov and Barno Amrullaeva}, title = {Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations}, journal = {American Journal of Physics and Applications}, volume = {6}, number = {6}, pages = {169-174}, doi = {10.11648/j.ajpa.20180606.15}, url = {https://doi.org/10.11648/j.ajpa.20180606.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20180606.15}, abstract = {C=O vibrational bands of various aggregated formations of pure acetic acid in the Raman spectra have different values of the depolarization ratio. Ab initio calculations using the Gaussian 98 W program in the Hartree-Fock approximation with the basic set of Gaussian functions RHF 6-31G++(d, p) show that this is how it should be. Thus, the formation of aggregates from molecules leads not only to a change in the dipole moment of the molecules, but also to a change in the bond polarizability tensor. Calculations according to this program showed that one of the hydrogen atoms of CH3 group of acetonitrile can participate in the intermolecular hydrogen bond. This can lead to the formation of closed acetonitrile-acetic acid dimers. However, a comparison of the calculated and experimental data shows that in the case of acid-acetonitrile molecules, the H-bond is formed in the direction of the elongation –О-Н…N of acetonitrile molecules. The activity of one of the hydrogen atoms of the CH3 group of acetonitrile leads to the formation of closed dimeric aggregates in pure acetonitrile with a shift of the СN band of acetonitrile towards lower frequencies. The low-frequency asymmetry of СN acetonitrile band in the Raman spectra is associated with the presence of such aggregates in liquid acetonitrile.}, year = {2019} }
TY - JOUR T1 - Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations AU - Khakim Khushvaktov AU - Abduvakhid Jumabaev AU - Valeriy Pogorelov AU - Ulugbek Tashkenbaev AU - Akhmad Absanov AU - Gayrat Sharifov AU - Barno Amrullaeva Y1 - 2019/01/15 PY - 2019 N1 - https://doi.org/10.11648/j.ajpa.20180606.15 DO - 10.11648/j.ajpa.20180606.15 T2 - American Journal of Physics and Applications JF - American Journal of Physics and Applications JO - American Journal of Physics and Applications SP - 169 EP - 174 PB - Science Publishing Group SN - 2330-4308 UR - https://doi.org/10.11648/j.ajpa.20180606.15 AB - C=O vibrational bands of various aggregated formations of pure acetic acid in the Raman spectra have different values of the depolarization ratio. Ab initio calculations using the Gaussian 98 W program in the Hartree-Fock approximation with the basic set of Gaussian functions RHF 6-31G++(d, p) show that this is how it should be. Thus, the formation of aggregates from molecules leads not only to a change in the dipole moment of the molecules, but also to a change in the bond polarizability tensor. Calculations according to this program showed that one of the hydrogen atoms of CH3 group of acetonitrile can participate in the intermolecular hydrogen bond. This can lead to the formation of closed acetonitrile-acetic acid dimers. However, a comparison of the calculated and experimental data shows that in the case of acid-acetonitrile molecules, the H-bond is formed in the direction of the elongation –О-Н…N of acetonitrile molecules. The activity of one of the hydrogen atoms of the CH3 group of acetonitrile leads to the formation of closed dimeric aggregates in pure acetonitrile with a shift of the СN band of acetonitrile towards lower frequencies. The low-frequency asymmetry of СN acetonitrile band in the Raman spectra is associated with the presence of such aggregates in liquid acetonitrile. VL - 6 IS - 6 ER -