A detailed study of electrically active defects present in InAlAs/InP heterostructure and InAlAs/InGaAs/InP High Electron Mobility Transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) is presented. Current and capacitance Deep Level Transient Spectroscopy (I-DLTS and C-DLTS) techniques are used for the identification of active electrical defects. A notable correlation between deep levels observed by I -DLTS and C-DLTS results and the contribution of parasitic effects (Kink and Hysteresis effects) on output characteristics was evidenced. A new model for Kink effect is presented on InAlAs / InGaAs / InP HEMT’s. This model uses a new polynomial dependence of sheet carrier concentration, on bias and temperature of device structure to calculate Ids – Vds characteristics. The simulation model enables us to confirm that the Kink parasitic effect in Ids – Vds characteristics is strongly correlated by trapping and detrapping mechanisms. Experimental and theoretical results obtained by the new model are in good agreement.
Published in | American Journal of Physics and Applications (Volume 1, Issue 1) |
DOI | 10.11648/j.ajpa.20130101.14 |
Page(s) | 18-24 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
DLTS, I-DLTS, Ids-Vds, PL, Kink Effect, HEMT
[1] | D. Delagebeaudeuf, N. T. Linh, IEEE Trans. Electron. Dev. 1982; 29: 955-960. |
[2] | Hase, H. Hünkel, D. R. T. Zahn, W. Richter, J. Appl. Phys. 1994 ;76 (4): 2459. |
[3] | M.A. Khan, M.S. Shur, Q.C. Chen, J.N. Kuznia, Electron. Lett.1994; 30: 2175. |
[4] | P.B. Klein, J.A. Freitas Jr., S.C. Binari,A.E.Wickenden, Appl. Phys. Lett. 1999; 75: 4014. |
[5] | S.C. Binari, et al., Solid-State Electron. 1997; 41: 1549–1554. |
[6] | S.C. Binari, J.M. Redwing, G. Kelner, W. Kruppa, Electron. Lett. 1997; 33: 242–243. |
[7] | S. Trassaert, et al.,Electron. Lett.1999; 34: 1386–1388. |
[8] | W. Kruppa, S.C. Binari, K. Doverspike, Electron. Lett.1995; 31: 1951. |
[9] | Daumiller, D. Theron, C. Gaquiere, A. Vescan, R. Dietrich, A. Wieszt, H. Leier, R. Vetury, U.K. Mishra, I.P. Smorchkova, S. Keller, N.X. Nguyen, C.N. Nguyen, E. Kohn, IEEE Electron. Dev. Lett. 2001; 22: 62. |
[10] | D.V. Kuksenkov, H. Temkin, R. Gaska, J.W. Yang, IEEE Electron. Dev. Lett. 1998; 19: 222. |
[11] | S.L. Rumyantsev, N. Pala, M.S. Shur, E. Borovitskaya, A.P. Dmitriev, M.E. Levinshtein, R. Gaska, M.A. Khan, J. Yang, X. Hu, G. Simin, IEEE Trans. Electron. Dev. 2001; 48: 530. |
[12] | W. Kruppa, S.C. Binari, K. Doverspike, Electron. Lett.1995; 31: 1951–1952. |
[13] | R. Gupta, A. Kranti, S. Haldar, M. Gupta, R. S. Gupta, Microelectronic Engineering, Vol. 60, pp. 323 – 337, (2002). |
[14] | R. Gupta, S. K. Aggarwal, M. Gupta, R. S. Gupta, Microelectronics Journal, Vol. 37, pp. 919 – 929, (2006). |
[15] | Souifi, B. Georgescu, G. Brémond, M. A. Py, J. Décobert, G. Post, and G. Guillot, 11thInternalional Conference on Indium Phosphide and Related Materials, 1999: 487. |
[16] | J. Décobert, P. Regreny, H. Maher, M. Le Pallec, A. Falcou, M. Juhel, G. Post, Proceeding of the N-International conference IPRM’97, Hyannis, USA, 1997: 74. |
[17] | T. Enoki, K. Arai, A. Kohzen, Y. Ishii, IEEE Trans. Electron. Dev. 1995; 42: 1413. |
[18] | H. Maher, J. Décobert, G. post, Nationales Micro-Optoélectron. Chantilly (France) 1997: 172. |
[19] | S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom, and L. J. Giling, J. Appl. Phys. 1993; 73 (11): 7798. |
[20] | D. Vignaud, X. Wallart and F. Mollot, B. Sermage, J. Appl. phys., 1998; 84 (4): 2138. |
[21] | J. K. Luo and H. Thomas, S. A. Clark and R. H. Williams, J. Appl. Phys. 1993; 74 (11): 6726. |
[22] | S. Naritsuka, T. Noda, A. Wagai, S. Fujita, and Y. Ashizawa, Jpn. J. Appl. Phys. 1993; 32: L925. |
[23] | S. Naritsuka, T. Noda, A. Wagai, S. Fujita, and Y. Ashizawa, TUP6. |
[24] | S. Naritsuka, T. Noda, A. Wagai, S. Fujita, and Y. Ashizawa, Journal of Crystal Growth, 1993; 131: 186. |
[25] | J. K. Luo, H. Thomas and I. L. Morris, Electronics Letters, 1992; 28 (8): 797. |
[26] | S. Bouzgarrou, M. M. Ben Salem, F. Hassen, A. Kalboussi, A. Souifi, Materials Science and Engineering B, 2005; 116: 202 – 207. |
[27] | M. M. Ben Salem, S. Bouzgarrou, N. Sghaier, A. Kalboussi, A. Souifi, Materials Science and Engineering B, 2006; 127: 34 – 40. |
[28] | N. Sghaier, S. Bouzgarrou, M. M. Ben Salem, A. Kalboussi, A. Souifi, Materials Science and Engineering B, 2005; 121: 178 – 182. |
[29] | D. Sala, W. Kellner, T. Grave, M. Gatti, G. Meneghesso, L. Vendrame, Proceedings of ESREF’95, European Symposium on Reability and Failure Analysis, Bordereaux, France, 1995: 435 – 440. |
[30] | Mazzanti, G. Verzellesi, L. Vicini, C. Canali, A. Chini, G. Meneghesso , Proc EDMO, 2001: 137 – 142. |
[31] | T. Suemitsu, T. Enoki, Nobuyukisano, M. Tomizawa, Y. Ishii, IEEE Tans. Electron Dev. vol. 1998; 45 (12): 2390-2399. |
[32] | L. N. Balkov, M. Kitamura, I. L. Maksimov, Journal of Crystal Growth, Vol. 275, pp. 617 – 623, (2005). |
[33] | Shalimov, J. B. Misiuk, J. Kaniewski, J. Trela, W. Wierzchowski, K. Wierteska, W. Graeff, Vol401, pp. 221 – 225, (2005). |
[34] | G. Meneghesso, E. Zanoni, Microelectronics Reliability, 2002; 42: 685 – 708. |
[35] | M. H. Somerville, A. Ernest, J. A. del Alamo, IEEE Tans. Electron Dev. vol. 2000; 47 (5): 922-930. |
[36] | S. M. Sze, "Phisics of semiconductor devices", Wiley, New York, (1981). |
[37] | H. Mathieu, "Physique des semiconducteurs et des composantes électroniques, Paris (1987). |
[38] | Bengi, S. Altindal, S. Ozçelik, T. S. Mammadov, Physica B, Vol. 396, pp. 22 – 28, (2007). |
[39] | R. Gupta, S. K. Aggarwal, M. Gupta, R. S. Gupta, Solid – State Electronics, Vol. 49, pp. 167 – 174, (2005). |
[40] | G. A. Umana-Membreno, J. M. Dell, L. Faraone, Y. F. Wu, G. Parish and U. K. Mishra, Microelectron J 2000; 31(7): 531-536. |
[41] | B. Georgescu, A. Souifi, G. Post, and G. Guillot, Internalional Conference on Indium Phosphide and Related Materials, 1997: 173. |
[42] | W. Kruppa, and J. B. Boos. Electron.Lett. 1994; 30 (4): 368-369. |
[43] | Caddemi, G. Crupi and N. Donato, Solid – State Electronics, Vol. 2005; 49 (6): 928 – 934. |
APA Style
S. Bouzgarrou, M. M. Ben Salem, A. Kalboussi, A. Souifi. (2013). Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s. American Journal of Physics and Applications, 1(1), 18-24. https://doi.org/10.11648/j.ajpa.20130101.14
ACS Style
S. Bouzgarrou; M. M. Ben Salem; A. Kalboussi; A. Souifi. Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s. Am. J. Phys. Appl. 2013, 1(1), 18-24. doi: 10.11648/j.ajpa.20130101.14
AMA Style
S. Bouzgarrou, M. M. Ben Salem, A. Kalboussi, A. Souifi. Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s. Am J Phys Appl. 2013;1(1):18-24. doi: 10.11648/j.ajpa.20130101.14
@article{10.11648/j.ajpa.20130101.14, author = {S. Bouzgarrou and M. M. Ben Salem and A. Kalboussi and A. Souifi}, title = {Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s}, journal = {American Journal of Physics and Applications}, volume = {1}, number = {1}, pages = {18-24}, doi = {10.11648/j.ajpa.20130101.14}, url = {https://doi.org/10.11648/j.ajpa.20130101.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20130101.14}, abstract = {A detailed study of electrically active defects present in InAlAs/InP heterostructure and InAlAs/InGaAs/InP High Electron Mobility Transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) is presented. Current and capacitance Deep Level Transient Spectroscopy (I-DLTS and C-DLTS) techniques are used for the identification of active electrical defects. A notable correlation between deep levels observed by I -DLTS and C-DLTS results and the contribution of parasitic effects (Kink and Hysteresis effects) on output characteristics was evidenced. A new model for Kink effect is presented on InAlAs / InGaAs / InP HEMT’s. This model uses a new polynomial dependence of sheet carrier concentration, on bias and temperature of device structure to calculate Ids – Vds characteristics. The simulation model enables us to confirm that the Kink parasitic effect in Ids – Vds characteristics is strongly correlated by trapping and detrapping mechanisms. Experimental and theoretical results obtained by the new model are in good agreement.}, year = {2013} }
TY - JOUR T1 - Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s AU - S. Bouzgarrou AU - M. M. Ben Salem AU - A. Kalboussi AU - A. Souifi Y1 - 2013/06/30 PY - 2013 N1 - https://doi.org/10.11648/j.ajpa.20130101.14 DO - 10.11648/j.ajpa.20130101.14 T2 - American Journal of Physics and Applications JF - American Journal of Physics and Applications JO - American Journal of Physics and Applications SP - 18 EP - 24 PB - Science Publishing Group SN - 2330-4308 UR - https://doi.org/10.11648/j.ajpa.20130101.14 AB - A detailed study of electrically active defects present in InAlAs/InP heterostructure and InAlAs/InGaAs/InP High Electron Mobility Transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) is presented. Current and capacitance Deep Level Transient Spectroscopy (I-DLTS and C-DLTS) techniques are used for the identification of active electrical defects. A notable correlation between deep levels observed by I -DLTS and C-DLTS results and the contribution of parasitic effects (Kink and Hysteresis effects) on output characteristics was evidenced. A new model for Kink effect is presented on InAlAs / InGaAs / InP HEMT’s. This model uses a new polynomial dependence of sheet carrier concentration, on bias and temperature of device structure to calculate Ids – Vds characteristics. The simulation model enables us to confirm that the Kink parasitic effect in Ids – Vds characteristics is strongly correlated by trapping and detrapping mechanisms. Experimental and theoretical results obtained by the new model are in good agreement. VL - 1 IS - 1 ER -