| Peer-Reviewed

Assumptions of Metric Variable-Type in Bell’s Theorem

Received: 3 October 2013     Published: 30 November 2013
Views:       Downloads:
Abstract

An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these assumptions are examined.

Published in American Journal of Modern Physics (Volume 2, Issue 6)
DOI 10.11648/j.ajmp.20130206.22
Page(s) 350-356
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Bell’s Inequalities, Non-Classical Measurability, Metric Variables, Projective Geometry

References
[1] J. S. Bell, Speaking and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, UK 1987)
[2] A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 49 n. 2 (1982) p. 91
[3] A. J. Legget, Found. Phys. vol 33, no 10 1469 (2003)
[4] S. Groblacher, T. Paterek, R. Kaltsiefer, C. Bruckner, M. Zukowski, M ASpelmeyer, A. Zeilinger, Nature 446, 871 (2007)
[5] A. Aspect, Nature 438 745 (2005)
[6] G. Ghirardi, Journal of Physics: Conf. Series 174 (2009) 012013
[7] S. Goldstein, T. Norsen, D. Tausk, N. Zanghi, Scholarpedia, 6(10):8378
[8] T. Norsen, American Journal of Physics 79, 1261 (2011); T. Norsen, Found. Phys. vol. 37, no 3 311 (2007)
[9] G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, H. M. Wiseman, Phys. Rev. Lett. 94, 220405 (2005)
[10] M. Ozawa, Phys, Lett. A.318 (2003) 21
[11] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa and Y. Hasegaw, Nature Physics vol 8, 185 March 2012
[12] H. Wiseman, N. J. Phys. 9, 165 (2007)
[13] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. Krister Shalm, A. M. Steinberg, Science, vol 332 1170 (2011)
[14] J. S. Lundeen, A. M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009)
[15] V. Allori, S. Goldstein, R. Tumulka, N. Zanghi British J. Philos. Sci. 59 353 (2008)
[16] J. S. Bell, Physics, 1, 195 – 200 (1964)
[17] Angel G. Valdenebro, Eur. J. Phys. 23 569 (2002)
[18] Abner Shimony, "Bell’s Theorem", Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/bell-theorem
[19] David Hilbert, The Foundations of Geometry 2005 EBook 17384
[20] A. M. Cetto, L. De La Pena, and E. Santos, Phys. Lett. 113A, 304 (1985)
[21] J. S. Bell, Ann. (N. Y.) Acad. Sci. 480, 263 (1986)
[22] O. Cohen, Phys. Rev. A. vol 56, no. 5, 3484 (1997)
[23] J. Kiukas, R. F. Werner, J. of Math. Phys. v51, n7, 072105 (2010)
[24] Fosco Ruzzene Geometrical Interpretation of Quantum Mechanics (unpublished)
Cite This Article
  • APA Style

    Fosco Ruzzene. (2013). Assumptions of Metric Variable-Type in Bell’s Theorem. American Journal of Modern Physics, 2(6), 350-356. https://doi.org/10.11648/j.ajmp.20130206.22

    Copy | Download

    ACS Style

    Fosco Ruzzene. Assumptions of Metric Variable-Type in Bell’s Theorem. Am. J. Mod. Phys. 2013, 2(6), 350-356. doi: 10.11648/j.ajmp.20130206.22

    Copy | Download

    AMA Style

    Fosco Ruzzene. Assumptions of Metric Variable-Type in Bell’s Theorem. Am J Mod Phys. 2013;2(6):350-356. doi: 10.11648/j.ajmp.20130206.22

    Copy | Download

  • @article{10.11648/j.ajmp.20130206.22,
      author = {Fosco Ruzzene},
      title = {Assumptions of Metric Variable-Type in Bell’s Theorem},
      journal = {American Journal of Modern Physics},
      volume = {2},
      number = {6},
      pages = {350-356},
      doi = {10.11648/j.ajmp.20130206.22},
      url = {https://doi.org/10.11648/j.ajmp.20130206.22},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20130206.22},
      abstract = {An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these assumptions are examined.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Assumptions of Metric Variable-Type in Bell’s Theorem
    AU  - Fosco Ruzzene
    Y1  - 2013/11/30
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ajmp.20130206.22
    DO  - 10.11648/j.ajmp.20130206.22
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 350
    EP  - 356
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20130206.22
    AB  - An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these assumptions are examined.
    VL  - 2
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Department of Econometrics & Business Statistics, Monash University 900 Dandenong Road, Caulfield East, Australia

  • Sections