An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these assumptions are examined.
Published in | American Journal of Modern Physics (Volume 2, Issue 6) |
DOI | 10.11648/j.ajmp.20130206.22 |
Page(s) | 350-356 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Bell’s Inequalities, Non-Classical Measurability, Metric Variables, Projective Geometry
[1] | J. S. Bell, Speaking and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, UK 1987) |
[2] | A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 49 n. 2 (1982) p. 91 |
[3] | A. J. Legget, Found. Phys. vol 33, no 10 1469 (2003) |
[4] | S. Groblacher, T. Paterek, R. Kaltsiefer, C. Bruckner, M. Zukowski, M ASpelmeyer, A. Zeilinger, Nature 446, 871 (2007) |
[5] | A. Aspect, Nature 438 745 (2005) |
[6] | G. Ghirardi, Journal of Physics: Conf. Series 174 (2009) 012013 |
[7] | S. Goldstein, T. Norsen, D. Tausk, N. Zanghi, Scholarpedia, 6(10):8378 |
[8] | T. Norsen, American Journal of Physics 79, 1261 (2011); T. Norsen, Found. Phys. vol. 37, no 3 311 (2007) |
[9] | G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, H. M. Wiseman, Phys. Rev. Lett. 94, 220405 (2005) |
[10] | M. Ozawa, Phys, Lett. A.318 (2003) 21 |
[11] | J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa and Y. Hasegaw, Nature Physics vol 8, 185 March 2012 |
[12] | H. Wiseman, N. J. Phys. 9, 165 (2007) |
[13] | S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. Krister Shalm, A. M. Steinberg, Science, vol 332 1170 (2011) |
[14] | J. S. Lundeen, A. M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009) |
[15] | V. Allori, S. Goldstein, R. Tumulka, N. Zanghi British J. Philos. Sci. 59 353 (2008) |
[16] | J. S. Bell, Physics, 1, 195 – 200 (1964) |
[17] | Angel G. Valdenebro, Eur. J. Phys. 23 569 (2002) |
[18] | Abner Shimony, "Bell’s Theorem", Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/bell-theorem |
[19] | David Hilbert, The Foundations of Geometry 2005 EBook 17384 |
[20] | A. M. Cetto, L. De La Pena, and E. Santos, Phys. Lett. 113A, 304 (1985) |
[21] | J. S. Bell, Ann. (N. Y.) Acad. Sci. 480, 263 (1986) |
[22] | O. Cohen, Phys. Rev. A. vol 56, no. 5, 3484 (1997) |
[23] | J. Kiukas, R. F. Werner, J. of Math. Phys. v51, n7, 072105 (2010) |
[24] | Fosco Ruzzene Geometrical Interpretation of Quantum Mechanics (unpublished) |
APA Style
Fosco Ruzzene. (2013). Assumptions of Metric Variable-Type in Bell’s Theorem. American Journal of Modern Physics, 2(6), 350-356. https://doi.org/10.11648/j.ajmp.20130206.22
ACS Style
Fosco Ruzzene. Assumptions of Metric Variable-Type in Bell’s Theorem. Am. J. Mod. Phys. 2013, 2(6), 350-356. doi: 10.11648/j.ajmp.20130206.22
AMA Style
Fosco Ruzzene. Assumptions of Metric Variable-Type in Bell’s Theorem. Am J Mod Phys. 2013;2(6):350-356. doi: 10.11648/j.ajmp.20130206.22
@article{10.11648/j.ajmp.20130206.22, author = {Fosco Ruzzene}, title = {Assumptions of Metric Variable-Type in Bell’s Theorem}, journal = {American Journal of Modern Physics}, volume = {2}, number = {6}, pages = {350-356}, doi = {10.11648/j.ajmp.20130206.22}, url = {https://doi.org/10.11648/j.ajmp.20130206.22}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20130206.22}, abstract = {An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these assumptions are examined.}, year = {2013} }
TY - JOUR T1 - Assumptions of Metric Variable-Type in Bell’s Theorem AU - Fosco Ruzzene Y1 - 2013/11/30 PY - 2013 N1 - https://doi.org/10.11648/j.ajmp.20130206.22 DO - 10.11648/j.ajmp.20130206.22 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 350 EP - 356 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20130206.22 AB - An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these assumptions are examined. VL - 2 IS - 6 ER -