Physical principles underlying the concept of the Dark Matter (DM) are considered. Problems of Dark Matter particle detection are briefly reviewed. An original two-channel scheme for direct detection of cosmic DM particles is proposed. It is based on a super-low-temperature calorimeter and includes a nuclear spin system whose magnetic response is measured by a quantum interferometer (SQUID). Low threshold and the capability for efficiently suppressing the recoil-electron background are the most important advantages of the proposed scheme. They make it possible to detect DM particles with extremely low recoil energies and carry out direct DM search with high sensitivity.
Published in | American Journal of Modern Physics (Volume 2, Issue 4) |
DOI | 10.11648/j.ajmp.20130204.15 |
Page(s) | 208-216 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
SQUID, Paramagnetism, Low Temperature, Dark Matter
[1] | F. Zwicky. Helv. Phys. Acta. 6, 110 (1933). |
[2] | G. Bertone, Dan Hooper, J. Silk, arXiv:hep-ph/0404175 2, 13 Aug. (2004). |
[3] | G. Chardin. arXiv:astro-ph/0411503 3, 28 Feb. (2005). |
[4] | EROS Collaboration. Astron. Astrophys. 400, 951, astro-ph/0212176 (2003). |
[5] | B. Goldmann et al., (EROS Collaboration), Astron. Astrophys. 389, L69. (2002). |
[6] | N. Straumann. arXiv :hep-ph/0604231 1, 26 Apr. (2006). |
[7] | G. N. Izmailov, L. N. Zherikhina, V. A. Ryabov, and A. M. Tskhovrebov Chapter 1 in Dark Energy Theoreis, Developments, and Implications. Editors K. Lefebvre and R. Garcia. Nova Science Publishers 2010 |
[8] | Spergel D N, Bean R, Doré O et al Astrophys. J. Suppl 170 377 (2007); astro-ph/0603449 |
[9] | Cole S, Sanchez A G, Wilkins S; ASP Conf. Ser. 379 57 (2007); astro-ph/0611178 |
[10] | Tegmark M, Eisenstein D, Strauss M et al Phys.Rev. D 74 123507 (2006); astro-ph/0608632 |
[11] | Sanders R H, McGaugh S S Ann. Rev. Astron. Astrophys. 40 263 (2002); astro-ph/0204521 |
[12] | Bertone G, Hooper D, Silk J Phys.Rept. 405 279 (2005); hep-ph/0404175 |
[13] | Griest K, Kamionkowski M, Turner M Phys.Rev.Lett. 64 615 (1990) |
[14] | Hui L Phys.Rev.Lett. 86 3467 (2001) |
[15] | Taoso M, Bertone G, Masiero A ; astro-ph/0711.4996 |
[16] | Ellis J, Hagelin J, Nanopoulos D Nucl.Phys. B 238 453 (1984) |
[17] | Jungman G, Kamionkowski M, Griest K Phys.Rep. 267 195 (1996); hep-ph/9506380 |
[18] | Arkani-Hamed N, Dimopoulos S, Dvali G Phys.Lett. B 429 263 (1998); hep-ph/9803315 |
[19] | Arkani-Hamed N, Dimopoulos S, Dvali G Phys.Rev. D 59 086004 (1999); hep-ph/9807344 |
[20] | Randall L, Sundrum R Phys.Rev.Lett. 83 3370 (1999); hep-ph/9905221 |
[21] | Randall L, Sundrum R Phys.Rev.Lett. 83 4690 (1999); hep-th/9906064 |
[22] | Witten E Nucl.Phys. B 471 135 (1996); hep-th/9602070 |
[23] | Lykken J DPhys.Rev D 54 3693 (1996); hep-th/9603133 |
[24] | Antoniadis I, Dimopoulos S, Dvali G Nucl.Phys.B 516, 70 (1998); hep-ph/9710204 |
[25] | Dienes K R, Dudas E, Gherghetta T Phys.Lett.B 436 55 (1998); hep-ph/9803466 |
[26] | Appelquist T, Cheng H-C, Dobrescu B A Phys.Rev. D 62 035002 (2001); hep-ph/0012100 |
[27] | Servant G, Tait T M P Nucl.Phys. 650, 391 (2003); hep-ph/0206071 |
[28] | Baudis L Int.J.Mod.Phys. A 21 1925 (2006) ; astro-ph/0511805 |
[29] | Morales A, Aalseth C E, Avignone F T et al Phys.Lett. B 489 268 (2000); hep-ex/0002053 |
[30] | Klapdor-Kleingrothaus H V, Dietz A, Heusser G Astropart.Phys. 18 525 (2003); hep-ph/0206151 |
[31] | Burgos S, Forbes J, Ghag C et al // submitted to Astroparticle Physics; hep-ex/0707.1488 |
[32] | Santos D, Moulin E, Mayet F, Macias-Perez J J.Phys.Conf.Ser. 39 154 (2006); astro-ph/0512220 |
[33] | Bernabei R, Belli P, Cappella F Int.J.Mod.Phys. D 13 2127 (2004); astro-ph/0501412 |
[34] | Bernabei R Contributed paper to Neutrinoless Double Beta Decay (NDBD07), Ahmedabad (India), February 2007; astro-ph/0704.3543 |
[35] | Ahmed B, Alner G J, Araujo H Astropart.Phys. 19 691 (2003); hep-ex/0301039 |
[36] | Cebrian S, Amare J, Carmona J M et al Nucl.Phys.Proc.Suppl. 114 111 (2003); hep-ex/0211050 |
[37] | Shimizu Y, Minowa M, Suganuma W, Inoue Y Phys.Lett. B 633 195 (2006); astro-ph/0510390 |
[38] | Lee H S, Bhang H C, Choi J H et al Phys.Rev.Lett. 99 091301 (2007); astro-ph/0704.0423 |
[39] | Fushimi K-I, Yasudai K, Kamedai Y et al Proc. of TAUP2007; nucl-ex/0711.3053 |
[40] | Sumner T. Proc. of the 5-th Int. Symp. Sources and Detection of Dark Matter and Dark Energy in the Universe, Marina del Ray, 2002 |
[41] | Cebrian S, Coron N, Dambier G et al Astropart.Phys. 15 79 (2001); astro-ph/0004292 |
[42] | Angloher C et al Astropart.Phys. 18 43 (2002) |
[43] | Bolte W J, Collar J I, Crisler M et al Nucl. Instr. Meth. A 577 569 (2007); astro-ph/0503398 |
[44] | Barnabe-Heider M, Behnke E, Clark K et al Phys.Lett. B 624 186 (2005); hep-ex/0502028 |
[45] | Girard T A, Giuliani F, Morlat T et al Phys.Lett. B 233 621 (2005); hep-ex/0505053 |
[46] | Borer K, Czapek G, Hasenbalg F et al Astropart.Phys. 22 199 (2004); astro-ph/0404311 |
[47] | Angloher G, Bucci C, Christ P et al Astropart.Phys. 23 325 (2005); astro-ph/0408006 |
[48] | Akerib D S, Alvaro-Dean J, Armel M S et al Phys.Rev. D 68 082002 (2003); hep-ex/0306001 |
[49] | Sanglard V, Benoit A, Berge L. et al Phys.Rev. D 71 122002 (2005); astro-ph/0503265 |
[50] | Alner G J, Araujo H M, Bewick A et al; astro-ph/0701858 |
[51] | Akimov D Yu, Alner G J, Araujo H M Astropart.Phys. 27 46 (2007); astro-ph/0605500 |
[52] | Angle J, Aprile E, Arneodo F et al Phys. Rev. Lett. 100 021303 (2008); astro-ph/0706.0039 |
[53] | Benetti P, Acciarri R, Adamo F et al Submitted to Astroparticle Physics; astro-ph/0701286 |
[54] | Laffranchi M., Rubbia A. Journal of Physics, Conference Series 65 012014 (2007); hep-ph/0702080 |
[55] | O. V. Lounasmaa. Experimental principles and methods below 1K. (London and New York, Academic Press 1974). |
[56] | J. Low. Temp. Phys. 3, (1993). |
[57] | J. Clarke. Physics Today, March, 39 (3), 36 (1986). |
[58] | A. I. Golovashkin, G. N. Izmailov, L. N. Zherikhina et al., Kvant. Elektronika 36 (12), 1168 (2006). |
[59] | E. V. Bugaev, Yu. D. Kotov, and I. L. Rozental. Cosmic muons and neutrinos. (Atomizdat, Moscow, 1970). |
[60] | A. I. Golovashkin, G. N. Izmaïlov, G. V. Kuleshova, T. Q. Khánh, A. M. Tskhovrebov, L. N. Zherikhina, Magnetic calorimeter for registration of small energy release, Europe Physics Journal, 58, Number 3., 243-249 (2007). |
APA Style
Alexander I. Golovashkin, George N. Izmaïlov, Vladimir A. Ryabov, Andrey M. Tshovrebov, Larisa N. Zherikhina. (2013). Dark Matter Particle Detection System SQUID - Magnetic Calorimeter. American Journal of Modern Physics, 2(4), 208-216. https://doi.org/10.11648/j.ajmp.20130204.15
ACS Style
Alexander I. Golovashkin; George N. Izmaïlov; Vladimir A. Ryabov; Andrey M. Tshovrebov; Larisa N. Zherikhina. Dark Matter Particle Detection System SQUID - Magnetic Calorimeter. Am. J. Mod. Phys. 2013, 2(4), 208-216. doi: 10.11648/j.ajmp.20130204.15
AMA Style
Alexander I. Golovashkin, George N. Izmaïlov, Vladimir A. Ryabov, Andrey M. Tshovrebov, Larisa N. Zherikhina. Dark Matter Particle Detection System SQUID - Magnetic Calorimeter. Am J Mod Phys. 2013;2(4):208-216. doi: 10.11648/j.ajmp.20130204.15
@article{10.11648/j.ajmp.20130204.15, author = {Alexander I. Golovashkin and George N. Izmaïlov and Vladimir A. Ryabov and Andrey M. Tshovrebov and Larisa N. Zherikhina}, title = {Dark Matter Particle Detection System SQUID - Magnetic Calorimeter}, journal = {American Journal of Modern Physics}, volume = {2}, number = {4}, pages = {208-216}, doi = {10.11648/j.ajmp.20130204.15}, url = {https://doi.org/10.11648/j.ajmp.20130204.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20130204.15}, abstract = {Physical principles underlying the concept of the Dark Matter (DM) are considered. Problems of Dark Matter particle detection are briefly reviewed. An original two-channel scheme for direct detection of cosmic DM particles is proposed. It is based on a super-low-temperature calorimeter and includes a nuclear spin system whose magnetic response is measured by a quantum interferometer (SQUID). Low threshold and the capability for efficiently suppressing the recoil-electron background are the most important advantages of the proposed scheme. They make it possible to detect DM particles with extremely low recoil energies and carry out direct DM search with high sensitivity.}, year = {2013} }
TY - JOUR T1 - Dark Matter Particle Detection System SQUID - Magnetic Calorimeter AU - Alexander I. Golovashkin AU - George N. Izmaïlov AU - Vladimir A. Ryabov AU - Andrey M. Tshovrebov AU - Larisa N. Zherikhina Y1 - 2013/06/30 PY - 2013 N1 - https://doi.org/10.11648/j.ajmp.20130204.15 DO - 10.11648/j.ajmp.20130204.15 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 208 EP - 216 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20130204.15 AB - Physical principles underlying the concept of the Dark Matter (DM) are considered. Problems of Dark Matter particle detection are briefly reviewed. An original two-channel scheme for direct detection of cosmic DM particles is proposed. It is based on a super-low-temperature calorimeter and includes a nuclear spin system whose magnetic response is measured by a quantum interferometer (SQUID). Low threshold and the capability for efficiently suppressing the recoil-electron background are the most important advantages of the proposed scheme. They make it possible to detect DM particles with extremely low recoil energies and carry out direct DM search with high sensitivity. VL - 2 IS - 4 ER -