The quality of infrastructure, including buildings, is an indicator of a country's development status. However, it must be noted that these buildings entail high energy costs and also contribute to the global greenhouse effect. The building sector is therefore a crucial issue in terms of adapting to climate change because it is at the heart of a dual energy and environmental problem. To address this challenge, energy efficiency policies are increasingly being adopted worldwide, with the aim of improving the energy performance of buildings. In the present work, the thermo-physical properties of four types of materials, namely: "cement and roast fibre" composite, "cement and rice husk" composite, "agglomerate" and "cement and bar soil" composite, were exploited to implement thermal simulations under TRNSYS environment. The aim was to determine the thermal contributions of the walls built with these materials and those allowing a better comfort in the building by estimating and comparing the energy needs of the proposed variants with those of the reference building. The study showed that the walls made of "cement and rice husks" composite and "cement and roast tree fibres" composite allow to reduce respectively by 20% and 11%, the cooling needs linked to air conditioning for the living room, and respectively by 32% and 27% for the bedroom, compared to the reference building made of agglomerate (with a thickness e= 0.15 m). For the walls made of "cement and earth bar", the cooling requirement increased by 31% for the living room and decreased by 5% for the bedroom, compared to the "chipboard" reference building. Furthermore, the TEWI evaluation showed that the "cement and rice husk" and "cement and roast fibre" composites have a lower environmental impact.
Published in | American Journal of Energy Engineering (Volume 9, Issue 2) |
DOI | 10.11648/j.ajee.20210902.14 |
Page(s) | 48-59 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Thermal Insulation, Roast Wood Fibres, Rice Husks, Chipboard, Bar Soil, Dynamic Thermal Simulation
[1] | Document, ‘Version complète PAG Bénin révélé 2016-2021’, Projet phare du secteur de l’énergie, page 59. |
[2] | Revue, ‘Le livre blanc de l’efficacité énergétique’, Schneider Electric, 2011, 32p. |
[3] | Rapport, ‘Policy Pathway: Modernising Building Energy Codes’, AIE-UNDP, 2013, 74p. |
[4] | Rapport, ‘Système d’information énergétique du Bénin’, Direction Générale de l’Energie, 2010, 142p. |
[5] | H. Necib, R. Belakroum et K. Belakroum, ‘Amélioration de l’isolation thermique des habitats dans les régions chaudes et arides’, Third International Conference on Energy, Materials, AppliedEnergetics and Pollution, 2016. |
[6] | NefissaBelkacem, ‘Contribution à l’évaluation des performances énergétiques et environnementales d’un habitat individuel bioclimatique: cas de la maison pilote de Souidania, Alger, Algérie’, Thèse de Doctorat, Université HassibaBenbouali de Chlef, pp. 88, 2017. |
[7] | Thomas Marchal, ‘Modélisation en régime dynamique d’une maison basse énergie Etude de cas Maison Politehnica’, Mémoire de Master, Université de Lorraine, Faculté des Sciences et Technologie de Nancy, 2014. |
[8] | Jedidi et al, ‘Etude de l’efficacité énergétique d’un bâtiment en Tunisie’, 1er Colloque International des Energies Nouvelles et Renouvelables- Innovation et Progrès Scientifiques CIENRIPS, 2018. |
[9] | Oscar Godonou,‘Etude comparative de la capacité de rétention thermique de quelques matériaux locaux de construction au Bénin’, Mémoire de Master Génie Mécanique et Energétique, Université d’Abomey-Calavi, Ecole Polytechnique d’Abomey-Calavi, 118p, 2015. |
[10] | Henri Hounkpatin, Victorin Chegnimonhan, Guy Clarence Sèmassou, Basile Kounouhewa, Emile Sanya and Antoine Vianou, 2018 ‘Study of the impact of thermal inputs by roofs on the hygrothermal comfort of habitats in tropical environment’, International Journal of Current Research, 10, (08), 72323-72336. |
[11] | Dirk Nathaniels, ‘Simulation thermique dynamique de l’influence des apports thermiques par la toiture sur le confort dans un bâtiment résidentiel au Sud du Bénin’ Mémoire de Master Energies Renouvelables et Systèmes Energétiques, Université d’Abomey-Calavi, 2018. |
[12] | Document, ‘TRNSYS Version 17, User Manual, Multizone Building modeling with Type56 and TRNBuild,’, Solar Energy Laboratory, University of Wisconsin, Madison, pp. 147-148, 2014. |
[13] | Moreno, B., Del Ama Gonzalo, F., Fernandiz, J. A., Lauret, B. Hernandez, JA. A building energy simulation methodology to validate energy balance and comfort in zero energy buildings. Journal of Energy Systems 2019, 3 (4), 168-182, DOI: 10.30521/jes. 623285. |
[14] | Aymeric Novel. Développement d’une méthode de méta modélisation des consommations énergétiques des bâtiments en fonction des facteurs d’usages et d’exploitation pour la garantie de résultat énergétique. Génie civil. Université de La Rochelle, 2019. |
[15] | Ahcène Djemaa. Modélisation bottom-up, un outil d’aide à la decision long terme pour les mesures politiques en matière d’énergie et d’environnement: le modèle TIMES appliqué aux industries grandes consommatrices d’énergie. Sciences de l’Homme et Société. Ecole Nationale Supérieure des Mines de Paris, 2009. |
[16] | C. K. Cheung, R. J. Fuller and M. B. Luther, ‘Energy Efficient Envelope Design for High Rise Apartments’, Energy and Building, Vol. 37, N°1, pp. 37-48, 2005. |
[17] | N. Safer, ‘Modélisation des Façades de Type Double-Peau Equipées de Protections Solaires: Approches Multi-Echelles’, Thèse de Doctorat, INSA de Lyon, Centre de Thermique de Lyon, 2006. |
[18] | Madi Kaboré, ‘Enjeux de la simulation pour l'étude des performances énergétiques des bâtiments en Afrique sub-saharienne’, Thèse de Doctorat, Université Grenoble Alpes, pp. 70, 2015. |
[19] | K. DOKO, ‘Formulation et étude comparative des proprietés physiques, mécaniques et thermiques des composites à matrice cimentaire renforcée par des biomasses végétales: cas des fibres de Aethiopum Borassus Mart et des balles de riz’, Thèse de Doctorat de l'Université d'Abomey-Calavi, 2013. |
[20] | G. CHAFFA, C. AWANTO, L. A. FAGBEMI., ‘Amélioration des conditions d’ambiance intérieure en zone tropicale sèche: cas des habitations dans la région septentrionale du Bénin’, Communication 5ème Colloque des Sciences, Cultures et Technologies de l’Université d’Abomey-Calavi, 28 Septembre au 03 Octobre, 2015. |
[21] | G. CHAFFA, E. SANYA, M. SAKO, Y. N’GUESSAN., ‘Analyse de l’efficacité énergétique des bâtiments climatisés en région chaude’, LEMA, LFT. |
APA Style
Guy Clarence Semassou, Jean-Louis Comlan Fannou, Edmond Claude Vodounnou, Mèdéhou Elogni Segbotangni, Kouamy Victorin Chegnimonhan. (2021). Dynamic Thermal Study of a Building Insulated with Local Biosource Materials and Analysis of Consumption. American Journal of Energy Engineering, 9(2), 48-59. https://doi.org/10.11648/j.ajee.20210902.14
ACS Style
Guy Clarence Semassou; Jean-Louis Comlan Fannou; Edmond Claude Vodounnou; Mèdéhou Elogni Segbotangni; Kouamy Victorin Chegnimonhan. Dynamic Thermal Study of a Building Insulated with Local Biosource Materials and Analysis of Consumption. Am. J. Energy Eng. 2021, 9(2), 48-59. doi: 10.11648/j.ajee.20210902.14
AMA Style
Guy Clarence Semassou, Jean-Louis Comlan Fannou, Edmond Claude Vodounnou, Mèdéhou Elogni Segbotangni, Kouamy Victorin Chegnimonhan. Dynamic Thermal Study of a Building Insulated with Local Biosource Materials and Analysis of Consumption. Am J Energy Eng. 2021;9(2):48-59. doi: 10.11648/j.ajee.20210902.14
@article{10.11648/j.ajee.20210902.14, author = {Guy Clarence Semassou and Jean-Louis Comlan Fannou and Edmond Claude Vodounnou and Mèdéhou Elogni Segbotangni and Kouamy Victorin Chegnimonhan}, title = {Dynamic Thermal Study of a Building Insulated with Local Biosource Materials and Analysis of Consumption}, journal = {American Journal of Energy Engineering}, volume = {9}, number = {2}, pages = {48-59}, doi = {10.11648/j.ajee.20210902.14}, url = {https://doi.org/10.11648/j.ajee.20210902.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajee.20210902.14}, abstract = {The quality of infrastructure, including buildings, is an indicator of a country's development status. However, it must be noted that these buildings entail high energy costs and also contribute to the global greenhouse effect. The building sector is therefore a crucial issue in terms of adapting to climate change because it is at the heart of a dual energy and environmental problem. To address this challenge, energy efficiency policies are increasingly being adopted worldwide, with the aim of improving the energy performance of buildings. In the present work, the thermo-physical properties of four types of materials, namely: "cement and roast fibre" composite, "cement and rice husk" composite, "agglomerate" and "cement and bar soil" composite, were exploited to implement thermal simulations under TRNSYS environment. The aim was to determine the thermal contributions of the walls built with these materials and those allowing a better comfort in the building by estimating and comparing the energy needs of the proposed variants with those of the reference building. The study showed that the walls made of "cement and rice husks" composite and "cement and roast tree fibres" composite allow to reduce respectively by 20% and 11%, the cooling needs linked to air conditioning for the living room, and respectively by 32% and 27% for the bedroom, compared to the reference building made of agglomerate (with a thickness e= 0.15 m). For the walls made of "cement and earth bar", the cooling requirement increased by 31% for the living room and decreased by 5% for the bedroom, compared to the "chipboard" reference building. Furthermore, the TEWI evaluation showed that the "cement and rice husk" and "cement and roast fibre" composites have a lower environmental impact.}, year = {2021} }
TY - JOUR T1 - Dynamic Thermal Study of a Building Insulated with Local Biosource Materials and Analysis of Consumption AU - Guy Clarence Semassou AU - Jean-Louis Comlan Fannou AU - Edmond Claude Vodounnou AU - Mèdéhou Elogni Segbotangni AU - Kouamy Victorin Chegnimonhan Y1 - 2021/06/07 PY - 2021 N1 - https://doi.org/10.11648/j.ajee.20210902.14 DO - 10.11648/j.ajee.20210902.14 T2 - American Journal of Energy Engineering JF - American Journal of Energy Engineering JO - American Journal of Energy Engineering SP - 48 EP - 59 PB - Science Publishing Group SN - 2329-163X UR - https://doi.org/10.11648/j.ajee.20210902.14 AB - The quality of infrastructure, including buildings, is an indicator of a country's development status. However, it must be noted that these buildings entail high energy costs and also contribute to the global greenhouse effect. The building sector is therefore a crucial issue in terms of adapting to climate change because it is at the heart of a dual energy and environmental problem. To address this challenge, energy efficiency policies are increasingly being adopted worldwide, with the aim of improving the energy performance of buildings. In the present work, the thermo-physical properties of four types of materials, namely: "cement and roast fibre" composite, "cement and rice husk" composite, "agglomerate" and "cement and bar soil" composite, were exploited to implement thermal simulations under TRNSYS environment. The aim was to determine the thermal contributions of the walls built with these materials and those allowing a better comfort in the building by estimating and comparing the energy needs of the proposed variants with those of the reference building. The study showed that the walls made of "cement and rice husks" composite and "cement and roast tree fibres" composite allow to reduce respectively by 20% and 11%, the cooling needs linked to air conditioning for the living room, and respectively by 32% and 27% for the bedroom, compared to the reference building made of agglomerate (with a thickness e= 0.15 m). For the walls made of "cement and earth bar", the cooling requirement increased by 31% for the living room and decreased by 5% for the bedroom, compared to the "chipboard" reference building. Furthermore, the TEWI evaluation showed that the "cement and rice husk" and "cement and roast fibre" composites have a lower environmental impact. VL - 9 IS - 2 ER -