This paper aims to study the empirical Bayes estimation of the parameter of ЭРланга distribution under a weighted squared error loss function. Bayes estimator is firstly to derive based on pivot method. Then empirical Bayes estimator of unknown parameter is constructed in a priori unknown circumstances. The asymptotically optimal property of this empirical Bayes estimator is also discussed. It is shown that the convergence rates of the proposed empirical Bayes estimator can arbitrarily close to O(n) -1) under suitable conditions.
Published in | American Journal of Applied Mathematics (Volume 4, Issue 6) |
DOI | 10.11648/j.ajam.20160406.14 |
Page(s) | 283-288 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Empirical Bayes Estimator, Asymptotic Optimality, Weighted Squared Error Loss Function, ЭРланга Distribution
[1] | Clayton D., Kaldor J., 1987. Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 43(3):671-81. |
[2] | Karunamuni R. J., 1996. Empirical Bayes sequential estimation for exponential families: the untruncated component. Annals of the Institute of Statistical Mathematics, 48(4): 711-730. |
[3] | Guarino C. M., Maxfield M., Reckase M. D., et al., 2015. An evaluation of empirical Bayes's estimation of value-added teacher performance measures. Journal of Educational & Behavioral Statistics, 40(2):190-222. |
[4] | Prakash G., 2015. Reliability performances based on empirical Bayes censored Gompertz data. International Journal of Advanced Research, 3(11):1297-1307. |
[5] | Coram M., Candille S., Duan, Q., Chan K. H., Li Y., Kooperberg C., et al., 2015. Leveraging multi-ethnic evidence for mapping complex traits in minority populations: an empirical Bayes approach. American Journal of Human Genetics, 96(5): 740-52. |
[6] | Naznin F., Currie G., Sarvi M., Logan D., 2015. An empirical Bayes safety evaluation of tram/streetcar signal and lane priority measures in melbourne. Traffic Injury Prevention, 17(1): 91-97. |
[7] | Fan G. L., Ling N. X., Xu H. X., 2010. Asymptotically optimal empirical Bayes estimation of parameter for scale-exponential family under PA Samples. Chinese Quarterly Journal of Mathematics, 25(3):372-378. |
[8] | Rousseau J., Szabo B., 2015. Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator. Statistics, 40(10):885-9. |
[9] | Wang L., Wei L., 2010. Empirical Bayes estimation for the scale parameter with errors in variables. Southeast Asian Bulletin of Mathematics, 34(6):1119-1131. |
[10] | Liu R., Cao Y., 2011. Optimal behavior of EB estimator for two-exponential distribution family. Journal of Huazhong Normal University, 45(4):542-546. |
[11] | Zhang W. P., Wei L. S., 2005. The asymptotically optimal empirical Bayes estimators of variance components in one-way classification random effect model. Journal of Systems Science and Mathematical Sciences, 25(1):106-117. |
[12] | Seal B., Hossain S. J., 2015. Empirical Bayes estimation of parameters in Markov transition probability matrix with computational methods. Journal of Applied Statistics, 42(42):508-519. |
[13] | Steorts R. C., Ghosh, M., 2013. On estimation of mean squared errors of benchmarked empirical Bayes estimators. Statistica Sinica, 23(2): 749-767. |
[14] | Jiang W., 2013. On regularized general empirical Bayes estimation of normal means. Journal of Multivariate Analysis, 114(2):54-62. |
[15] | Park J. Y., 2012. Nonparametric empirical Bayes estimator in simultaneous estimation of Poisson means with application to mass spectrometry data. Journal of Nonparametric Statistics, 24(1):245-265. |
[16] | Lv H. Q., Gao L. H. and Chen C. L., 2002. Эрланга distribution and its application in supportability data analysis. Journal of Academy of Armored Force Engineering, 16(3): 48-52. |
[17] | Pan G. T., Wang B. H., Chen C. L., Huang Y. B.and Dang M. T., 2009. The research of interval estimation and hypothetical test of small sample of Зрланга distribution. Application of Statistics and Management, 28(3): 468-472. |
[18] | Long B., 2013. The estimations of parameter from Зрланга distribution under missing data samples. Journal of Jiangxi Normal University (Natural Science), 37(1): 16-19. |
[19] | Podder C. K., Roy M. K., Bhuiyan K. J., et al., 2004. Minimax estimation of the parameter of the Pareto distribution under quadratic and MLINEX loss functions. Pakistan Journal of Statistics, 20(1):137-149. |
[20] | Yang L. W., 2013. Minimax estimation of parameter for a class of scale distributions under different loss functions. Journal of Anhui University, 37(5):6-11. |
[21] | Ren H. P., Li J. P., 2012. Bayes estimation of traffic intensity in M/M/1 queue under a new weighted square error loss function. Advanced Materials Research, 2012, 485:490-493. |
[22] | Bao X. U., Song L. X., 2009. Estimator of the scale-parameter in a class of the exponential family under weighted quadratic loss function. Journal of Natural Science of Heilongjiang University, 26(6):766-769. |
[23] | Li L. P., 2016. Minimax estimation of the parameter of ЭРланга distribution under different loss functions, Science Journal of Applied Mathematics and Statistics. 4(5): 229-235. |
[24] | Yi W., Yan B., Miu B. Q. Y., 2012. Foreign exchange rates prediction based on generalized exponential predictor models with weighted loss function. Journal of Applied Statistics & Management, 31(5):799-804 |
[25] | Wang L. C., Wei L. S., 2002. The convergence rates of empirical Bayes estimation of the parameter for scale-exponential family. Chinese Annals of Mathematics Series A, 23(5): 555-564. |
[26] | Wang L. C., Wei L. S., 2002. Asymptotically optimal empirical Bayes estimation for parameters of scale-exponential families. Journal of University of Science and Technology of China, 32(1):62-69. |
APA Style
Guobing Fan. (2016). Asymptotic Optimal Empirical Bayes Estimation of the Parameter of ЭРланга Distribution. American Journal of Applied Mathematics, 4(6), 283-288. https://doi.org/10.11648/j.ajam.20160406.14
ACS Style
Guobing Fan. Asymptotic Optimal Empirical Bayes Estimation of the Parameter of ЭРланга Distribution. Am. J. Appl. Math. 2016, 4(6), 283-288. doi: 10.11648/j.ajam.20160406.14
AMA Style
Guobing Fan. Asymptotic Optimal Empirical Bayes Estimation of the Parameter of ЭРланга Distribution. Am J Appl Math. 2016;4(6):283-288. doi: 10.11648/j.ajam.20160406.14
@article{10.11648/j.ajam.20160406.14, author = {Guobing Fan}, title = {Asymptotic Optimal Empirical Bayes Estimation of the Parameter of ЭРланга Distribution}, journal = {American Journal of Applied Mathematics}, volume = {4}, number = {6}, pages = {283-288}, doi = {10.11648/j.ajam.20160406.14}, url = {https://doi.org/10.11648/j.ajam.20160406.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajam.20160406.14}, abstract = {This paper aims to study the empirical Bayes estimation of the parameter of ЭРланга distribution under a weighted squared error loss function. Bayes estimator is firstly to derive based on pivot method. Then empirical Bayes estimator of unknown parameter is constructed in a priori unknown circumstances. The asymptotically optimal property of this empirical Bayes estimator is also discussed. It is shown that the convergence rates of the proposed empirical Bayes estimator can arbitrarily close to O(n) -1) under suitable conditions.}, year = {2016} }
TY - JOUR T1 - Asymptotic Optimal Empirical Bayes Estimation of the Parameter of ЭРланга Distribution AU - Guobing Fan Y1 - 2016/11/07 PY - 2016 N1 - https://doi.org/10.11648/j.ajam.20160406.14 DO - 10.11648/j.ajam.20160406.14 T2 - American Journal of Applied Mathematics JF - American Journal of Applied Mathematics JO - American Journal of Applied Mathematics SP - 283 EP - 288 PB - Science Publishing Group SN - 2330-006X UR - https://doi.org/10.11648/j.ajam.20160406.14 AB - This paper aims to study the empirical Bayes estimation of the parameter of ЭРланга distribution under a weighted squared error loss function. Bayes estimator is firstly to derive based on pivot method. Then empirical Bayes estimator of unknown parameter is constructed in a priori unknown circumstances. The asymptotically optimal property of this empirical Bayes estimator is also discussed. It is shown that the convergence rates of the proposed empirical Bayes estimator can arbitrarily close to O(n) -1) under suitable conditions. VL - 4 IS - 6 ER -