Using the topological notion of compacity, we present a variational definition for the concepts of limit and derivative of a function. The main result of these new definition is that they produce implementable tests to check whether a value is the limit or the derivative of a differenciable function.
Published in | American Journal of Applied Mathematics (Volume 4, Issue 3) |
DOI | 10.11648/j.ajam.20160403.14 |
Page(s) | 137-141 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Variational, Limit, Derivative, Differenciation
[1] | Dieudonne, J., Foundations of Modern Analysis, Pure and Applied Mathematics \textbf{10}, Academic Press, New York, 1960. |
[2] | J. V. Grabiner, J. V., Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus, The American Mathematica Monthly (90) (3), 185-194, 1983. |
[3] | W.H.Press, W. H., et al, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 2007. |
[4] | F. Riesz, F., Oeuvres complètes, 2 vol, Paris, Gauthier-Villars, 1960. |
[5] | J. V. Grabiner, J. V., The Changing Concept of Change: the derivative from Fermat to Weistrass, Mathematics magazine, vol 56, no. 14, pp 195-206, 1983. |
[6] | Rudin, Walter., Functional Analysis, Mc Graw-Hill, NY, 1991. |
[7] | Boyer, C. B., The History of Calculus and Its Conceptual Development, Dover, N Y, 1949. |
[8] | Henry, D. B., Differential Calculus in Banach Spaces, Dan Henry’s Manuscript, http//www.ime.usp.br/map/dhenry/danhenry/math.htm, 2006 |
[9] | Kato, T., Pertubation Theory for Linear Operators, Springer-Verlag, N Y, 1986. |
[10] | Bordr, K. C. and Aliprantes C. D., Infinite Dimension Real Analysis, Springer-Verlag, N Y, 2006. |
APA Style
Munhoz Antonio Sergio, Souza Filho, Antonio Calixto. (2016). A Variational Definition for Limit and Derivative. American Journal of Applied Mathematics, 4(3), 137-141. https://doi.org/10.11648/j.ajam.20160403.14
ACS Style
Munhoz Antonio Sergio; Souza Filho; Antonio Calixto. A Variational Definition for Limit and Derivative. Am. J. Appl. Math. 2016, 4(3), 137-141. doi: 10.11648/j.ajam.20160403.14
AMA Style
Munhoz Antonio Sergio, Souza Filho, Antonio Calixto. A Variational Definition for Limit and Derivative. Am J Appl Math. 2016;4(3):137-141. doi: 10.11648/j.ajam.20160403.14
@article{10.11648/j.ajam.20160403.14, author = {Munhoz Antonio Sergio and Souza Filho and Antonio Calixto}, title = {A Variational Definition for Limit and Derivative}, journal = {American Journal of Applied Mathematics}, volume = {4}, number = {3}, pages = {137-141}, doi = {10.11648/j.ajam.20160403.14}, url = {https://doi.org/10.11648/j.ajam.20160403.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajam.20160403.14}, abstract = {Using the topological notion of compacity, we present a variational definition for the concepts of limit and derivative of a function. The main result of these new definition is that they produce implementable tests to check whether a value is the limit or the derivative of a differenciable function.}, year = {2016} }
TY - JOUR T1 - A Variational Definition for Limit and Derivative AU - Munhoz Antonio Sergio AU - Souza Filho AU - Antonio Calixto Y1 - 2016/05/22 PY - 2016 N1 - https://doi.org/10.11648/j.ajam.20160403.14 DO - 10.11648/j.ajam.20160403.14 T2 - American Journal of Applied Mathematics JF - American Journal of Applied Mathematics JO - American Journal of Applied Mathematics SP - 137 EP - 141 PB - Science Publishing Group SN - 2330-006X UR - https://doi.org/10.11648/j.ajam.20160403.14 AB - Using the topological notion of compacity, we present a variational definition for the concepts of limit and derivative of a function. The main result of these new definition is that they produce implementable tests to check whether a value is the limit or the derivative of a differenciable function. VL - 4 IS - 3 ER -