In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary Differential Equation (ODE) part and Newton-Cotes formulae for integral parts.
Published in | Applied and Computational Mathematics (Volume 3, Issue 1) |
DOI | 10.11648/j.acm.20140301.12 |
Page(s) | 9-14 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
A fourth and Fifth-Order Accuracy, Lagrange Polynomial Interpolating, Newton-Cotes Formulas, Runge-Kutta Methods, Linear Volterra Integro-Differential Equation
[1] | M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs and Mathematical Tables, New York: Dover, 1972, pp. 885–887. |
[2] | A. Asanov, Uniqueness of the solution of systems of convolution-type Volterra integral equations of the first kind, In: Inverse problems for differential equations of the mathematical physics (Russian), Novasibirsk: Akad. Nauk SSSR Sibirsk. Otdel. Vychil. Tsentr, 1978, Vol 155, pp. 2–34. |
[3] | R. L. Burden and J. D. Faires, Numerical Analysis, New York: Brooks/Cole Publishing Company, USA, 1997, ch.5. |
[4] | C. T. H. Baker, The Numerical Treatment of Integral Equations, Clarendon Press; Oxford University Press, 1977. |
[5] | C. T. H. Baker, G. A. Bochorov, A. Filiz, N. J. Ford, C. A. H. Paul, F. A. Rihan, A. Tang, R. M. Thomas, H. Tian, D. R. Wille "Numerical Modelling by Retarded Functional Differential Equations," Numerical Analysis Report, Manchester Center for Computational Mathematics, No:335, ISS 130-1725,1998. |
[6] | C. T. H. Baker, G. A. Bochorov, A. Filiz, N. J. Ford, C. A. H. Paul, F. A. Rihan, A. Tang, R. M. Thomas, H. Tian, D. R. Wille "Numerical Modelling by Delay and Volterra Functional Differential Equations," Numerical Analysis Report, In: Computer Mathematics and its Aplications-Advances & Developments (1994-2005), Elias A. Lipitakis (Editor), LEA Publishers, Athens, Greece, 2006, pp. 233-256. |
[7] | R. Bellman, A Survey of the Theory of the Boundedness Stability and Asymptotic Behaviour of Solutions of Linear and Non-linear differential and difference equations, Washington, D. C., 1949. |
[8] | K. L. Cooke, "Functional differential equations close to cifferential equation," Amer. Math. Soc., 1966, Vol.72, pp. 285-288. |
[9] | A. Filiz, "On the solution of Volterra and Lotka-Volterra Type Equations," LMS supported One Day Meeting in Delayed Differential equation (Liverpool, UK), 12th March 2000. |
[10] | A. Filiz, "Numerical Solution of Some Volterra Integral Equations," PhD Thesis, The University of Manchester, 2000. |
[11] | A. Filiz, "Fourth-order robust numerical method for integro-differential equations," Asian Journal of Fuzzy and Applied Mathematics, 2013, Vol. 1 I, pp. 28-33. |
[12] | P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985. |
[13] | C. W. Ueberhuber, Numerical Computation 2: Methods, Software and analysis, Berlin: Springer-Verlag, 1997. |
[14] | V. Volterra, Leçons Sur la Theorie Mathematique de la Lutte Pour La Vie, Gauthier-villars, Paris, 1931. |
[15] | V. Volterra, Theory of Functional and of Integro-Differential Equations. Dover, New York, 1959. |
[16] | V. Volterra, "Sulle Equazioni Integro-differenziali Della Teoria Dell’elastica," Atti Della Reale Accademia dei Lincei 18 (1909), Reprinted in Vito Volterra, Opera Mathematiche; Memorie e Note, Vol. 3, Accademia dei Lincei Rome, 1957. |
[17] | Wolfram MathWorld, Newton-Cotes Formulas, http://mathworld.wolfram.com/Newton-CotesFormulas.html |
APA Style
Ali Filiz. (2014). Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method. Applied and Computational Mathematics, 3(1), 9-14. https://doi.org/10.11648/j.acm.20140301.12
ACS Style
Ali Filiz. Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method. Appl. Comput. Math. 2014, 3(1), 9-14. doi: 10.11648/j.acm.20140301.12
AMA Style
Ali Filiz. Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method. Appl Comput Math. 2014;3(1):9-14. doi: 10.11648/j.acm.20140301.12
@article{10.11648/j.acm.20140301.12, author = {Ali Filiz}, title = {Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method}, journal = {Applied and Computational Mathematics}, volume = {3}, number = {1}, pages = {9-14}, doi = {10.11648/j.acm.20140301.12}, url = {https://doi.org/10.11648/j.acm.20140301.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140301.12}, abstract = {In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary Differential Equation (ODE) part and Newton-Cotes formulae for integral parts.}, year = {2014} }
TY - JOUR T1 - Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method AU - Ali Filiz Y1 - 2014/02/20 PY - 2014 N1 - https://doi.org/10.11648/j.acm.20140301.12 DO - 10.11648/j.acm.20140301.12 T2 - Applied and Computational Mathematics JF - Applied and Computational Mathematics JO - Applied and Computational Mathematics SP - 9 EP - 14 PB - Science Publishing Group SN - 2328-5613 UR - https://doi.org/10.11648/j.acm.20140301.12 AB - In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary Differential Equation (ODE) part and Newton-Cotes formulae for integral parts. VL - 3 IS - 1 ER -