The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane.
Published in | Applied and Computational Mathematics (Volume 2, Issue 5) |
DOI | 10.11648/j.acm.20130205.11 |
Page(s) | 115-117 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Non-Euclidean Geometry, Galilean Geometry, Affine Plane, Isotropic, Minkowski Space
[1] | Riemann, В., Uber die Hypothesen, welche der Geometrie zu Grunde liegen. Springer, Berlin, 1923. |
[2] | Klein, F., "Uber die sogenannte Nicht-Euklidische Geometrie," Gesammelte Math Abh I: 254-305, 311-343, 344-350, 353-383, 1921. |
[3] | Klein, F., Vorlesungen iiber nicht-Euklidische Geometrie. Springer, Berlin, 1928. |
[4] | Klein, F., Vergleichende Betrachtungen uber neure geometrische Forschungen. Gesammelte mathematische Abhandlungen, Vol. I, 1921, pp. 460-497. (English version is found in Sommerville, D. Μ. Υ., Bibliography of Non-Euclidean Geometry, 2nd ed., Chelsea, New York, 1970.) |
[5] | Yaglom, I.M. A Simple Non-Euclidean Geometry and Its Physical Basis, by Springer-Verlag New York Inc. 1979. |
[6] | Vincent Hugh. Using Geometric Algebra to Interactively Model the Geometry of Euclidean and non-Euclidean Spaces. February, 2007. |
[7] | Артыкбаев А. Соколов Д.Д. Геометрия в целом в плоском пространстве-времени. Ташкент. Изд. «Фан». 1991 г. |
APA Style
Abdullaaziz Artıkbayev, Abdullah Kurudirek, Hüseyin Akça. (2013). Occurrence of Galilean Geometry. Applied and Computational Mathematics, 2(5), 115-117. https://doi.org/10.11648/j.acm.20130205.11
ACS Style
Abdullaaziz Artıkbayev; Abdullah Kurudirek; Hüseyin Akça. Occurrence of Galilean Geometry. Appl. Comput. Math. 2013, 2(5), 115-117. doi: 10.11648/j.acm.20130205.11
AMA Style
Abdullaaziz Artıkbayev, Abdullah Kurudirek, Hüseyin Akça. Occurrence of Galilean Geometry. Appl Comput Math. 2013;2(5):115-117. doi: 10.11648/j.acm.20130205.11
@article{10.11648/j.acm.20130205.11, author = {Abdullaaziz Artıkbayev and Abdullah Kurudirek and Hüseyin Akça}, title = {Occurrence of Galilean Geometry}, journal = {Applied and Computational Mathematics}, volume = {2}, number = {5}, pages = {115-117}, doi = {10.11648/j.acm.20130205.11}, url = {https://doi.org/10.11648/j.acm.20130205.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20130205.11}, abstract = {The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane.}, year = {2013} }
TY - JOUR T1 - Occurrence of Galilean Geometry AU - Abdullaaziz Artıkbayev AU - Abdullah Kurudirek AU - Hüseyin Akça Y1 - 2013/09/10 PY - 2013 N1 - https://doi.org/10.11648/j.acm.20130205.11 DO - 10.11648/j.acm.20130205.11 T2 - Applied and Computational Mathematics JF - Applied and Computational Mathematics JO - Applied and Computational Mathematics SP - 115 EP - 117 PB - Science Publishing Group SN - 2328-5613 UR - https://doi.org/10.11648/j.acm.20130205.11 AB - The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane. VL - 2 IS - 5 ER -