| Peer-Reviewed

Occurrence of Galilean Geometry

Received: 24 July 2013     Published: 10 September 2013
Views:       Downloads:
Abstract

The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane.

Published in Applied and Computational Mathematics (Volume 2, Issue 5)
DOI 10.11648/j.acm.20130205.11
Page(s) 115-117
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Non-Euclidean Geometry, Galilean Geometry, Affine Plane, Isotropic, Minkowski Space

References
[1] Riemann, В., Uber die Hypothesen, welche der Geometrie zu Grunde liegen. Springer, Berlin, 1923.
[2] Klein, F., "Uber die sogenannte Nicht-Euklidische Geometrie," Gesammelte Math Abh I: 254-305, 311-343, 344-350, 353-383, 1921.
[3] Klein, F., Vorlesungen iiber nicht-Euklidische Geometrie. Springer, Berlin, 1928.
[4] Klein, F., Vergleichende Betrachtungen uber neure geometrische Forschungen. Gesammelte mathematische Abhandlungen, Vol. I, 1921, pp. 460-497. (English version is found in Sommerville, D. Μ. Υ., Bibliography of Non-Euclidean Geometry, 2nd ed., Chelsea, New York, 1970.)
[5] Yaglom, I.M. A Simple Non-Euclidean Geometry and Its Physical Basis, by Springer-Verlag New York Inc. 1979.
[6] Vincent Hugh. Using Geometric Algebra to Interactively Model the Geometry of Euclidean and non-Euclidean Spaces. February, 2007.
[7] Артыкбаев А. Соколов Д.Д. Геометрия в целом в плоском пространстве-времени. Ташкент. Изд. «Фан». 1991 г.
Cite This Article
  • APA Style

    Abdullaaziz Artıkbayev, Abdullah Kurudirek, Hüseyin Akça. (2013). Occurrence of Galilean Geometry. Applied and Computational Mathematics, 2(5), 115-117. https://doi.org/10.11648/j.acm.20130205.11

    Copy | Download

    ACS Style

    Abdullaaziz Artıkbayev; Abdullah Kurudirek; Hüseyin Akça. Occurrence of Galilean Geometry. Appl. Comput. Math. 2013, 2(5), 115-117. doi: 10.11648/j.acm.20130205.11

    Copy | Download

    AMA Style

    Abdullaaziz Artıkbayev, Abdullah Kurudirek, Hüseyin Akça. Occurrence of Galilean Geometry. Appl Comput Math. 2013;2(5):115-117. doi: 10.11648/j.acm.20130205.11

    Copy | Download

  • @article{10.11648/j.acm.20130205.11,
      author = {Abdullaaziz Artıkbayev and Abdullah Kurudirek and Hüseyin Akça},
      title = {Occurrence of Galilean Geometry},
      journal = {Applied and Computational Mathematics},
      volume = {2},
      number = {5},
      pages = {115-117},
      doi = {10.11648/j.acm.20130205.11},
      url = {https://doi.org/10.11648/j.acm.20130205.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20130205.11},
      abstract = {The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Occurrence of Galilean Geometry
    AU  - Abdullaaziz Artıkbayev
    AU  - Abdullah Kurudirek
    AU  - Hüseyin Akça
    Y1  - 2013/09/10
    PY  - 2013
    N1  - https://doi.org/10.11648/j.acm.20130205.11
    DO  - 10.11648/j.acm.20130205.11
    T2  - Applied and Computational Mathematics
    JF  - Applied and Computational Mathematics
    JO  - Applied and Computational Mathematics
    SP  - 115
    EP  - 117
    PB  - Science Publishing Group
    SN  - 2328-5613
    UR  - https://doi.org/10.11648/j.acm.20130205.11
    AB  - The main difference of Galilean geometry is its relative simplicity, for it enables the student to study it in relative detail without losing a great deal of time and intellectual energy. In this paper, we introduce you with new geometric(non-Euclidean) ideas which exist in affine plane and more simple than Euclidean plane.
    VL  - 2
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics Education, Ishik University, Arbil, Iraq

  • Sections